Activity

Filter

Cancel
Date Panel Item Activity
24 actions
COVID-19 research v1.12 CCL11 Sarah Leigh changed review comment from: CCL11 was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 3 grouping (experimental evidence and association data consistent with viral susceptibility); to: CCL11 was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 3 grouping (experimental evidence and association data consistent with viral susceptibility). Illumina review: CCL11 is a cytokine released in response to viral infections. No evidence found of SNPs in association with SARS-CoV-2 infection. From OMIM: PMID: 14571188: Modi et al. (2003) identified 3 SNPs that formed a 31-kb haplotype (H7) spanning the CCL2-CCL7-CCL11 gene cluster on chromosome 17q. The SNPs and the H7 haplotype were significantly associated with protection from HIV-1 infection. PMID:30915442: Hoffman et al. (2019) - West Nile virus infection outcome vary among individuals with most infections resulting in asymptomatic or mild-flu like symptoms. WNV-infected females reported more symptoms than males. Males were shown to exibit a protracted cytokine response including CCL11 (and CCL2, CXCL10 and IL-15) that was absent in females. PMID:32416070: Blanco-Melo et al. (2020) - look at the transcriptional response to SARS-CoV-2 compared to other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. SARS-CoV-2 shown to induce robust levels of chemokines including CCL2, CCl8 and CCL11 (Figure 4A).
COVID-19 research v1.1 CCL21 Rebecca Foulger commented on gene: CCL21
COVID-19 research v1.1 CCL21 Rebecca Foulger gene: CCL21 was added
gene: CCL21 was added to COVID-19 research. Sources: Expert Review Red,OMIM,Expert list
Mode of inheritance for gene: CCL21 was set to Unknown
COVID-19 research v0.348 CCR2 Rebecca Foulger changed review comment from: Evidence Summary from Illumina curation team:
CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).
PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).; to: Evidence Summary from Illumina curation team: CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).

PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).
COVID-19 research v0.348 CCR2 Rebecca Foulger changed review comment from: Evidence Summary from Illumina curation team: CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).
PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).; to: Evidence Summary from Illumina curation team:
CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).
PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).
COVID-19 research v0.348 CCR2 Rebecca Foulger commented on gene: CCR2: Evidence Summary from Illumina curation team: CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).
PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).
COVID-19 research v0.347 CCR7 Alison Coffey commented on gene: CCR7: Evidence Summary from Illumina curation team: The CCR7 gene encodes the C-C chemokine receptor 7, a chemokine receptor which is a member of the G protein-coupled receptor superfamily. CCR7 plays an important role in the homing of central memory and nave T cells to peripheral lymphoid organs. The binding of CCR7 ligands CCL19 and CCL21 during viral infection promotes activation and differentiation of CCR7 expressing cells, as well as changes in their migration properties to modulate the immune response (reviewed Yan et al. 2019). Some viral proteins target CCR7 and reduce its expression during viral infection (reviewed Yan et al. 2019), for example, the HIV-1 accessory protein, Vpu, interacts directly with CCR7 to cause its retention within the trans Golgi network of primary CD4+ T cells (Ramirez et al. 2014).
COVID-19 research v0.163 CCL2 Sophie Hambleton reviewed gene: CCL2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: Unknown
COVID-19 research v0.88 CCL2 Rebecca Foulger Classified gene: CCL2 as Green List (high evidence)
COVID-19 research v0.88 CCL2 Rebecca Foulger Added comment: Comment on list classification: Updated rating of CCL2 from Red to Green. 3 publications supporting an association between CCL2 SNP(s) and viral infections including HIV, Japanese encephalitis and SARs. Additional evidence that CCL2 levels are raised after viral infection.
COVID-19 research v0.88 CCL2 Rebecca Foulger Gene: ccl2 has been classified as Green List (High Evidence).
COVID-19 research v0.87 CCL2 Rebecca Foulger Phenotypes for gene: CCL2 were changed from {HIV-1, resistance to}, 609423; Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection; Susceptibility to SARS-CoV to {HIV-1, resistance to}, 609423; Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection; Susceptibility to SARS-CoV; Susceptibility to viral Japanese encephalitis
COVID-19 research v0.86 CCL2 Rebecca Foulger Publications for gene: CCL2 were set to 25818534; 26687605; 16916890; 24788844; 27260136
COVID-19 research v0.85 CCL2 Rebecca Foulger commented on gene: CCL2: PMID:29057937 (Chowdhury and Khan, 2017) report that SNPs of CCL2 (rs1024611G) and its receptor CCR2 (rs1799864A) significantly associated with Japanese encephalitis (JE) which may serve as possible genetic predisposing factor. JE is one of the major viral encephalitis in Asia and parts of Western Pacific.
COVID-19 research v0.48 CCL2 Rebecca Foulger Publications for gene: CCL2 were set to 25818534; 26687605; 16916890; 24788844
COVID-19 research v0.47 CCL2 Rebecca Foulger commented on gene: CCL2: PMID:27260136 (Kim et al., 2016) report that CCL2 ablation highly increased susceptibility to Japanese encephalitis, indicating that CCL2 plays an essential role in conferring protection against JE caused by JE virus (JEV) infection. They also note a surprising opposite effect for ablation of the CCR2 (the corresponding receptor).
COVID-19 research v0.47 CCL2 Rebecca Foulger Publications for gene: CCL2 were set to 25818534; 26687605; 16916890
COVID-19 research v0.46 CCL2 Rebecca Foulger commented on gene: CCL2: PMID:24788844 (Han et al., 2014) studied 36 Chines patients and report that the CCL2-2510G allele is associated with susceptibility to EV71 encephalitis in Chinese patients.
COVID-19 research v0.46 CCL2 Rebecca Foulger Phenotypes for gene: CCL2 were changed from Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection; Susceptibility to SARS-CoV to {HIV-1, resistance to}, 609423; Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection; Susceptibility to SARS-CoV
COVID-19 research v0.45 CCL2 Rebecca Foulger commented on gene: CCL2: PMID:16916890 (Ansari et al.) report increased CCL2 levels in HIV-1 patients, and suggest inhibition of CCL2 production could provide a therapeutic intervention in HIV infection.
COVID-19 research v0.45 CCL2 Rebecca Foulger Publications for gene: CCL2 were set to 25818534
COVID-19 research v0.44 CCL2 Rebecca Foulger commented on gene: CCL2
COVID-19 research v0.19 CCL2 Ellen McDonagh gene: CCL2 was added
gene: CCL2 was added to Viral susceptibility. Sources: Literature
Mode of inheritance for gene: CCL2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CCL2 were set to 25818534
Phenotypes for gene: CCL2 were set to Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection; Susceptibility to SARS-CoV
Added comment: PMID: 25818534 reports that the CCL2 G-2518A and MBL codon 54 variants have a significantly cumulative effect on increased risk of SARS-CoV infection.
Sources: Literature
COVID-19 research v0.14 MBL2 Ellen McDonagh commented on gene: MBL2: PMID: 25818534 reports that the CCL2 G-2518A and MBL codon 54 variants have a significantly cumulative effect on increased risk of SARS-CoV infection.