Activity

Filter

Cancel
Date Panel Item Activity
9 actions
COVID-19 research v1.62 CD209 Arina Puzriakova commented on gene: CD209
COVID-19 research v1.39 CD209 Sarah Leigh Phenotypes for gene: CD209 were changed from to {Dengue fever, protection against} 614371; {HIV type 1, susceptibility to} 609423; {Mycobacterium tuberculosis, susceptibility to} 607948
COVID-19 research v1.17 CLEC4M Sarah Leigh changed review comment from: CLEC4M was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 2 grouping (experimental and/or genetic evidence, suggesting a biological role linking to corona viruses, may not be a GDA); to: CLEC4M was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 2 grouping (experimental and/or genetic evidence, suggesting a biological role linking to corona viruses, may not be a GDA). Illumina review: CLEC4M is a C-type lectin gene serving as cell adhesion receptor and pathogen recognition receptor. It functions as a cellular receptor for variety of viruses, including HIV-1, hepatitis C, Ebola, and SARS-coronavirus. A highly polymorphic variable number tandem repeat (VNTR) at the neck-region of CLEC4M had been associated with genetic predisposition to some infectious diseases, however, genetic association studies have shown conflicting results about these associations (PMID:16991095;16369534;12738250;16364081;17321900;18697825;17534354;17534355). From OMIM: Associated with protection against SARs infection. PMID: 15496474: Jeffers et al. (2004) identified the cellular gylcoprotein CD209L (CLEC4M) as as an alternative receptor for SARS-CoV. CD209L is expressed in human lung in type II alveolar cells and endothelial cells, both potential targets for SARS-CoV. Several other enveloped viruses, including Ebola and Sindbis, also use CD209L as a portal of entry, and HIV and hepatitis C virus can bind to CD209L on cell membranes but do not use it to mediate virus entry. Jeffers et al. (2004) suggested that the large S glycoprotein of SARS-CoV may use both ACE2 and CD209L in virus infection and pathogenesis. PMID 16369534: Chan et al. (2006) - demonstrated that individuals homozygous for CLEC4M tandem repeats are less susceptible to SARS infection. CLEC4M was expressed in both non-SARS and SARS-CoV-infected lung. Compared with cells heterozygous for CLEC4M, cells homozygous for CLEC4M showed higher binding capacity for SARS-CoV, higher proteasome-dependent viral degradation, and a lower capacity for trans infection. Thus, homozygosity for CLEC4M plays a protective role during SARS infection. PMID: 17534354: Tang et al. (2007) - performed genotyping studies in SARS patients and controls and found no support for an association between homozygosity for CLEC4M and protection against SARS. PMID:17534355: Zhi et al. (2007) also failed to replicate the study by Chan et al. (2006). Chan et al. (2007) disputed the validity of both studies. PMID 18697825:Li et al. (2008) - genotyped SNPs in CLEC4M and other genes in the C-type lectin cluster in 181 Chinese SARS patients and 172 controls from an ethnically matched population and found no significant association with disease predisposition or prognosis. However, they detected a population stratification of the CLEC4M variable number tandem repeat (VNTR) alleles in a sample of 1,145 Han Chinese from different parts of China (northeast, south, and southwest). Analysis extended to 742 individuals from 7 ethnic minorities showed that those located along the Silk Road in northwestern China, where there is significant admixture with the European gene pool, had a low level of homozygosity, similar to European populations. Li et al. (2008) concluded that there is no SARS predisposition allele in the lectin gene cluster at chromosome 19p13.3, and that the previously reported association with polymorphisms in the CLEC4M neck region may be due to population stratification.
COVID-19 research v1.15 CD209 Sarah Leigh changed review comment from: CD209 was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 3 grouping (experimental evidence and association data consistent with viral susceptibility); to: CD209 was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 3 grouping (experimental evidence and association data consistent with viral susceptibility). Illumina review: One SNP associated with susceptibility to HIV infection, severity of dengue disease, increased risk of TB and severity of SARS infection. Pathogen-recognition receptor expressed on the surface of immature dendritic cells (DCs) and involved in initiation of primary immune response. Thought to mediate the endocytosis of pathogens which are subsequently degraded in lysosomal compartments. The receptor returns to the cell membrane surface and the pathogen-derived antigens are presented to resting T-cells via MHC class II proteins to initiate the adaptive immune response. From OMIM:The C-type lectin receptors are involved in the primary interface between host and pathogens. PMID:15564514: Martin et al. (2004) - European Americans at risk for parenteral HIV infection were more likely to carry the -336C SNP in the promoter of DCSIGN. This association was not observed in those at risk for mucosally acquired infection. Although the -336C SNP was common in African Americans, no significant association with risk of infection was observed in this group. PMID:15838506: Sakuntabhai et al. (2005) found that the same CD209 promoter polymorphism reported by Martin et al. (2004) (-336A>G in this study), was associated with severity of dengue disease. Specifically, the G allele of the variant was associated with strong protection against dengue fever as opposed to dengue hemorrhagic fever. PMID:16379498:Barreiro et al. (2006) looked at CD209 polymorphisms in 351 TB patients and 360 healthy controls from a South African Coloured population living in communities with some of the highest reported incidence rates of TB in the world. Identified two variants in the CD209 promoter, -871A and -336G, that were associated with increased risk of TB. PMID:20864747: Chan et al. (2010) - A single nucleotide polymorphism in the promoter region of the DC-SIGN gene is associated with disease severity in SARS. In the DC_SIGN promoter region, a single SNP, -336A>G has been found to affect transcription of DC-SIGN in vitro and is associated with susceptibility for HIV-1 and M. tuberculosis infectsions and with the severity of dengue (PMID:15838506;15838506;16379498). Large case-control study - genotyped the SNP in 824 SARS patients and 471 controls. Showed no association with susceptibility to infection but SARS patients carrying the DC-SIGN promoter -336G variant had lower risk of having higher lactate dehydrogenase levels on admission, an independent prognostic indicator for severity of SARS-CoV infection. In vitro functional studies demonstrated that the DC-SIGN -336G promoter provided a less effective binding site and lower promoter activity, which may lead to reduced DC-SIGN protein expression and hence may contribute to a reduced immune-response with reduced lung injury during the progression of SARS infection.
COVID-19 research v1.15 CD209 Sarah Leigh Publications for gene: CD209 were set to
COVID-19 research v1.11 CD209 Alison Coffey reviewed gene: CD209: Rating: AMBER; Mode of pathogenicity: ; Publications: 15564514, 15838506, 16379498, 20864747; Phenotypes: ; Mode of inheritance: Unknown
COVID-19 research v1.10 CD209 Sarah Leigh commented on gene: CD209: CD209 was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 3 grouping (experimental evidence and association data consistent with viral susceptibility)
COVID-19 research v0.176 CD209 Sarah Leigh reviewed gene: CD209: Rating: RED; Mode of pathogenicity: ; Publications: 15564514, 15838506, 16379498; Phenotypes: {Dengue fever, protection against} 614371, {HIV type 1, susceptibility to} 609423, {Mycobacterium tuberculosis, susceptibility to} 607948; Mode of inheritance: Unknown
COVID-19 research v0.121 CD209 Sarah Leigh gene: CD209 was added
gene: CD209 was added to Viral susceptibility. Sources: OMIM
Mode of inheritance for gene: CD209 was set to