Activity

Filter

Cancel
Date Panel Item Activity
18 actions
COVID-19 research v1.14 CCR5 Sarah Leigh changed review comment from: CCR5 was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 3 grouping (experimental evidence and association data consistent with viral susceptibility); to: CCR5 was identified through an OMIM search for potential viral susceptibility genes. Initial triage by Illumina (Alison Coffey and team) was given a Tier 3 grouping (experimental evidence and association data consistent with viral susceptibility). Illumina review: Cytokine receptor. From OMIM: Variation in the CCR5 gene is associated with susceptibility to West Nile Virus (PMID 16230476;21935451;19247438). Numerous studies additionally demonstrate variation in CCR5 is associated with resistance / susceptibility to HIV and HBV infection. PMID 24098976: Zapata et al. (2013) - main genetic factor related to HIV-1 resistance is the CCR5-Δ32 variant. The CCR5-Δ32 variant along with SNPs in the CCR5 promoter and the CCR2-V64I variant have been included in seven human haplogroups (HH) previously associated with resistance/susceptibility to HIV-1 infection and different rates of AIDS progression. This study determined the association of the CCR5 promoter SNPs, the CCR5-Δ32 mutation, CCR2-V64I SNP, and HH frequencies with resistance/susceptibility to HIV-1 infection in a cohort of HIV-1-serodiscordant couples from Colombia. The CCR5-Δ32 allele is not responsible for HIV-1 resistance in this HESN group; however, the CCR2-I allele could be protective, while the 29G allele might increase the likelihood of acquiring HIV-1 infection. HHG1 and the AGACCAC-CCR2-I-CCR5 wild-type haplotype might promote HIV-1 infection while HHF2 might be related to resistance. PMID 31686727: Moudi et al. (2019) - study evaluated the association between the CCR5-Δ32, CCR5-2459A/G, MCP-1-2518A/G, VDR-APa1A/C, VDR-Taq1T/C SNPs and HBV susceptibility, in samples of Iranian populations. Significant associations with susceptibility to chronic HBV infection was observed with CCR5-2459A/G, MCP1-2518A/G, VDR-APa1A/C, VDR-Taq1T/C polymorphisms. In addition, no association of the CCR5D32 SNP with the disease was found. PMID:31100442 - Koor et al. (2019) - 9 CCR5 haplotypes are defined by seven 5'UTR SNPs in HIV-1 disease. Study identified key SNPs in HIV-1 control in both controllers and progressors.
COVID-19 research v0.348 DICER1 Rebecca Foulger changed review comment from: Evidence Summary from Illumina curation team: The DICER1 gene, located on chromosome 14, position q32.13, was discovered in 2001 by Bernstein and is a member of the RNase III family, (also known as dicer 1, ribonuclease III; dicer1, Dcr-1 homolog (Drosophila); multinodular goitre 1). DICER1 is involved in the generation of double-stranded microRNAs (miRNAs), short non-coding RNAs, the cleavage of dsRNA into siRNAs, along with the biogenesis of numerous other small RNAs. There is increasing evidence DICER1 is also involved in regulating many other essential cellular processes such as those related to chromatin remodeling, inflammation, apoptosis and cell survival (Kurzynska-Kokorniak et al. 2015; Song and Rossi, 2017). DICER1 encodes a ∼220-KDa protein (RNase III endoribonuclease) which is a crucial component of the RNA Induced Silencing Complex (RISC) loading complex (RLC), comprised of dicer, Argonaute-2 (AGO-2), and trans-activation-responsive RNA binding protein 2 (TARBP2). The encoded protein is required by the RNA interference (RNAi) and small temporal RNA (stRNA) pathways to produce the active small RNA component which has a role in modulating gene expression at the post-transcriptional level. Research has shown that expression levels of cellular transcript and protein dicer are strictly controlled, with aberrant regulation contributing to carcinogenesis, neurodegenerative, rheumatic and immune system disorders. Studies have concluded that the encoded dicer ribonuclease-dependent processing of dsRNA viral replication intermediates into successive siRNAs is a conserved mammalian immune response to infection by positive-strand RNA viruses (Svobodova et al. 2016 summary & fig1; Li et al. 2013; Ding et al. 2018). Moreover, miRNAs play an important role in host-virus interactions in mammals (See Maillard et al. 2019 REVIEW; Foulkes et al. 2014 REVIEW).

IMMUNE SYSTEM
The cre-lox method for dicer1 gene knockout has been employed for studies into the role of dicer1 in immune cell development and function. Studies of dicer1 fl/fl mice have indicated short survival times along with severely impaired GMP differentiation into monocytes, neutrophils, myeloid DCs & mature macrophages. (Devasthanam et al. 2014). Results conclude that dicer1 is important in immune response and also vital for cell survival and apoptosis pathways. Muljo et al. (2005) investigated a conditional allele of dicer-1 (dcr-1) within a mouse model and showed that specific dcr-1 deletion in the T-cell lineage, resulted in impaired development of T-cells & aberrant cell differentiation of T-helper cells & cytokine production. Dcr-1 deletion in the thymus resulted in severe block in development of CD8+ T cells and resulted in defective microRNA processing in CD4+ T-cells. The results demonstrate Dicer regulates diverse aspects of T-cell biology along with cytokine production during T-cell differentiation where dicer-deficient T-cells preferentially express interferon-ƴ.

VIRUSES
Research by Galiana-Arnoux et al. (2006), of DICER in drosophila (drosophila have two dicer genes) have identified that DICER genes (Dcr1, miRNA pathway and Dcr2, RNAi pathway) control production of siRNA and a loss-of-function mutation in Dcr2 resulted in increased susceptibility to three different families of RNA viruses. Qi et al. (2012) research into RNAi gene silencing mechanism show that the B2 protein in Wuhan nodavirus (WhNV) suppresses Dcr2 in drosophila by direct interaction with the PAZ and RNAse III domains therefore blocking processing of dsRNA and siRNA. Evidence of a dicer antiviral system was also reported by Machitani et al. (2016) for mammalian human adenoviruses where DICER1 gene knockdown increased the copy number of adenovirus-encoding small RNAs (VA-RNAs) leading to the promotion of adenovirus replication; conversely, dicer overexpression significantly inhibited viral replication.
Modai et al. (2019) conclude that HIV-1 infection inhibits DICER1 by altering miRNA expression. They conclude that upon HIV-1 infection, human miR-186, 210 and 222 directly regulate DICER1 gene expression causing down-regulation of the gene contributing to impaired cell-mediated immunity (fig6). Other methods of inhibition are from viral proteins, termed viral suppressors of RNA silencing, which interact and inhibit dicer ribonuclease activity in HIV-1 and hepatitis C infections. These viral proteins may mediate proteasomal degradation of endoribonuclease dicer through CRL4DCAF1 ubiquitin ligase complex (Klockow et al. 2013), interact directly via the core protein (Chen et al. 2008) or HIV-1 transactivation of transcription (Bennasser and Jeang, 2006). Through these methods they can block dicer interactions with TRBP2 or ADAR1, boost macrophage infection, and subsequently reduce the function of short hairpin RNAs (shRNAs) which thus inhibit RNA silencing. Ultimately these viruses, though various methods, supress the ability of dicer to process dsRNAs into siRNAs boosting viral infection and pathogenesis.
Downregulation of DICER1 gene expression has additionally been found in cord blood of infants with severe respiratory syncytial virus (RSV), prior to RSV exposure, indicating this reduced expression may predispose newborns to RSV disease. Inchley et al. (2011) theorize that this occurs via disruption of leukocyte gene regulation of miRNA and direct anti-viral RNAi mechanisms. (Inchley et al. 2011 see section on “Dicer Gene Expression”).
Otsuka et al. (2007) have shown using gene-trap methods to obtain viable dicer1 fl/fl mice where dicer1 deficiency caused impairment of miR24 and miR93 production resulting in susceptibility to vesticular stomatitis virus (VSV) and herpes simplex-1 virus, but not other viruses tested.

SARS CoV & SARS CoV-2
Recently, Pasquier and Robichon, 2020 (preprint) have investigated the Dicer host immunity system regarding SARs-CoV-2 within a computational approach, concluding SARS-CoV2 may manipulate this system of immunity against its host, requiring further research. Mu et al., 2020 suggest SARs-CoV2 suppresses RNAi thus preventing recognition by the encoded ribonuclease dicer protein
Viral suppressors of RNA silencing (VSRs) suppress RNAi at pre or post-dicer level to overcome host defense and establish infection. Cui et al. (2015) from Wuhan University laboratory of virology, identified a novel VSR from coronaviruses (CoVs) including Severe acute respiratory syndrome coronavirus (SARS-CoV) and showed that the coronavirus nucelocaspid protein (N-protein), conserved and expressed in all coronaviruses, suppressed RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. They went on to show using mouse hepatitis virus A-59 (MHV-A59) which is closely linked to SARS-CoV in the family coronaviridae, that the viral replication was increased when the N proteins (novel VSR) were expressed but that knockdown of DICER1 gene or Ago2 transcripts facilitated the viral replication specifically in mammalian cells. They demonstrate that the N-protein of CoVs could efficiently inhibit dicer-mediated dsRNA cleavage and post-Dicer activities by sequestering dsRNAs and siRNAs. Kannan et al. (2020) performed clustal W analysis of N-Protein for SARS-CoV and COVID-19 demonstrating 90% sequence identity from an NCBI amino acid blast of both nucleocapsid (N) protein sequences (figure2). They suggest that the N-protein of COVID-19 may also function as a VSR for RNAi to overcome host defense. Ding et al. (2017) show that both MHV and SARS-CoV N proteins can also disrupt protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein which binds to RIG-I and MDA5 to activate interferon (IFN) production to prevent antiviral host response.

Literature Review
PMID: 17181864: Bennasser and Jeang, 2006
• HIV-1 Tat Interaction With Dicer: Requirement for RNA
• Tat-Dicer interaction depends on RNA, requires the helicase domain of Dicer, and is independent of Tat's transactivation domain.

PMID: 18325616: Chen et al., 2008
• HCV Core Protein Interacts With Dicer to Antagonize RNA Silencing

PMID: 26085159: Cui et al., 2015
• The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

PMID: 24303839: Devasthanam et al, 2014
• This study investigates the role of the dicer protein in immune cell development and function using dicer1 cre-lox knockout models to conditionally ablate dicer1 in different immune cell subsets.

PMID: 28591694: Ding et al., 2017
• The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/MDA5 activation

PMID: 30015086: Ding et al., 2018
• Antiviral RNA Interference in Mammals: Indicates infection of plants and insects with RNA and DNA viruses triggers Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs), which subsequently guide specific virus clearance by RNA interference (RNAi).

PMID: 25176334: Foulkes et al., 2012-REVIEW
• Review of DICER1: DICER1 Mutations, microRNAs and Mechanisms

PMID: 16554838: Galiana-Arnoux et al., 2006
• Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila.
• https://pubmed.ncbi.nlm.nih.gov/16554838/ or https://www.nature.com/articles/ni1335

PMID: 21385408: Inchley et al., 2011
• Investigates ribonuclease Dicer and analyzed the gene expression of Dicer in newborns of which 37 infants had sufficient cord blood RNA with confirmed RSV disease <1yr. Demonstrates significant reduced Dicer expression in cord blood prior to severe disease in infants <1yr later. Conclude downregulation may predispose infants to RSV disease.

PMID: 32141569: Kannan et al., 2020
• COVID-19 (Novel Coronavirus 2019) - Recent Trends
• Perform W cluster analysis of COVID-19 and SARS-CoV nucleocapsid (N) protein sequences of the viruses showing 90% amino acid sequence similarity. Suggest the N-protein may be a VSR in RNAi by targeting DICER.

PMID: 23849790: Klockow et al., 2013
• The HIV-1 Protein Vpr Targets the Endoribonuclease Dicer for Proteasomal Degradation to Boost Macrophage Infection

PMID: 25883138: Kurzynska-Kokorniak et al., 2015
• Investigating the complexity of the mechanisms regulating Dicer gene expression and enzyme activities

PMID: 24115437: Li et al, 2013
• Investigates RNA interference pathways in antiviral immunity in mammals overviewing dicer processing of dsRNA viral replication intermediates into siRNAs.

PMID: 27273616: Machitani et al., 2016
• Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA

PMID: 30872283: Maillard et al., 2019- REVIEW
• Reviewing DICER1 within the anti-viral RNAi pathway in mammals

PMID: 30682089: Modai et al, 2019
• HIV-1 infection increases miRNAs which inhibit Dicer

PMID: 32291557: Mu et al, 2020
• SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells

PMID: 16009718: Muljo et al., 2005
• Indicates absence of dicer results in abberant T-cell differentiation.

PMID: 17613256: Otsuka, et al 2007
• Hypersusceptibility to Vesicular Stomatitis Virus Infection in Dicer1-Deficient Mice Is Due to Impaired miR24 and miR93 Expression

No PMID: Preprint : Pasquier and Rubichon, 2020
• SARS-CoV-2 might manipulate against its host the immunity RNAi/Dicer/Ago system

PMID: 22438534: Qi et al., 2012
• Targeting of Dicer-2 and RNA by a Viral RNA Silencing Suppressor in Drosophila Cells

PMID: 28473628: Song and Rossi, 2017
• Molecular Mechanisms of Dicer: Endonuclease and Enzymatic Activity; to: Evidence Summary from Illumina curation team (Alison Coffey and Julie Taylor): The DICER1 gene, located on chromosome 14, position q32.13, was discovered in 2001 by Bernstein and is a member of the RNase III family, (also known as dicer 1, ribonuclease III; dicer1, Dcr-1 homolog (Drosophila); multinodular goitre 1). DICER1 is involved in the generation of double-stranded microRNAs (miRNAs), short non-coding RNAs, the cleavage of dsRNA into siRNAs, along with the biogenesis of numerous other small RNAs. There is increasing evidence DICER1 is also involved in regulating many other essential cellular processes such as those related to chromatin remodeling, inflammation, apoptosis and cell survival (Kurzynska-Kokorniak et al. 2015; Song and Rossi, 2017). DICER1 encodes a ∼220-KDa protein (RNase III endoribonuclease) which is a crucial component of the RNA Induced Silencing Complex (RISC) loading complex (RLC), comprised of dicer, Argonaute-2 (AGO-2), and trans-activation-responsive RNA binding protein 2 (TARBP2). The encoded protein is required by the RNA interference (RNAi) and small temporal RNA (stRNA) pathways to produce the active small RNA component which has a role in modulating gene expression at the post-transcriptional level. Research has shown that expression levels of cellular transcript and protein dicer are strictly controlled, with aberrant regulation contributing to carcinogenesis, neurodegenerative, rheumatic and immune system disorders. Studies have concluded that the encoded dicer ribonuclease-dependent processing of dsRNA viral replication intermediates into successive siRNAs is a conserved mammalian immune response to infection by positive-strand RNA viruses (Svobodova et al. 2016 summary & fig1; Li et al. 2013; Ding et al. 2018). Moreover, miRNAs play an important role in host-virus interactions in mammals (See Maillard et al. 2019 REVIEW; Foulkes et al. 2014 REVIEW).

IMMUNE SYSTEM
The cre-lox method for dicer1 gene knockout has been employed for studies into the role of dicer1 in immune cell development and function. Studies of dicer1 fl/fl mice have indicated short survival times along with severely impaired GMP differentiation into monocytes, neutrophils, myeloid DCs & mature macrophages. (Devasthanam et al. 2014). Results conclude that dicer1 is important in immune response and also vital for cell survival and apoptosis pathways. Muljo et al. (2005) investigated a conditional allele of dicer-1 (dcr-1) within a mouse model and showed that specific dcr-1 deletion in the T-cell lineage, resulted in impaired development of T-cells & aberrant cell differentiation of T-helper cells & cytokine production. Dcr-1 deletion in the thymus resulted in severe block in development of CD8+ T cells and resulted in defective microRNA processing in CD4+ T-cells. The results demonstrate Dicer regulates diverse aspects of T-cell biology along with cytokine production during T-cell differentiation where dicer-deficient T-cells preferentially express interferon-ƴ.

VIRUSES
Research by Galiana-Arnoux et al. (2006), of DICER in drosophila (drosophila have two dicer genes) have identified that DICER genes (Dcr1, miRNA pathway and Dcr2, RNAi pathway) control production of siRNA and a loss-of-function mutation in Dcr2 resulted in increased susceptibility to three different families of RNA viruses. Qi et al. (2012) research into RNAi gene silencing mechanism show that the B2 protein in Wuhan nodavirus (WhNV) suppresses Dcr2 in drosophila by direct interaction with the PAZ and RNAse III domains therefore blocking processing of dsRNA and siRNA. Evidence of a dicer antiviral system was also reported by Machitani et al. (2016) for mammalian human adenoviruses where DICER1 gene knockdown increased the copy number of adenovirus-encoding small RNAs (VA-RNAs) leading to the promotion of adenovirus replication; conversely, dicer overexpression significantly inhibited viral replication.
Modai et al. (2019) conclude that HIV-1 infection inhibits DICER1 by altering miRNA expression. They conclude that upon HIV-1 infection, human miR-186, 210 and 222 directly regulate DICER1 gene expression causing down-regulation of the gene contributing to impaired cell-mediated immunity (fig6). Other methods of inhibition are from viral proteins, termed viral suppressors of RNA silencing, which interact and inhibit dicer ribonuclease activity in HIV-1 and hepatitis C infections. These viral proteins may mediate proteasomal degradation of endoribonuclease dicer through CRL4DCAF1 ubiquitin ligase complex (Klockow et al. 2013), interact directly via the core protein (Chen et al. 2008) or HIV-1 transactivation of transcription (Bennasser and Jeang, 2006). Through these methods they can block dicer interactions with TRBP2 or ADAR1, boost macrophage infection, and subsequently reduce the function of short hairpin RNAs (shRNAs) which thus inhibit RNA silencing. Ultimately these viruses, though various methods, supress the ability of dicer to process dsRNAs into siRNAs boosting viral infection and pathogenesis.
Downregulation of DICER1 gene expression has additionally been found in cord blood of infants with severe respiratory syncytial virus (RSV), prior to RSV exposure, indicating this reduced expression may predispose newborns to RSV disease. Inchley et al. (2011) theorize that this occurs via disruption of leukocyte gene regulation of miRNA and direct anti-viral RNAi mechanisms. (Inchley et al. 2011 see section on “Dicer Gene Expression”).
Otsuka et al. (2007) have shown using gene-trap methods to obtain viable dicer1 fl/fl mice where dicer1 deficiency caused impairment of miR24 and miR93 production resulting in susceptibility to vesticular stomatitis virus (VSV) and herpes simplex-1 virus, but not other viruses tested.

SARS CoV & SARS CoV-2
Recently, Pasquier and Robichon, 2020 (preprint) have investigated the Dicer host immunity system regarding SARs-CoV-2 within a computational approach, concluding SARS-CoV2 may manipulate this system of immunity against its host, requiring further research. Mu et al., 2020 suggest SARs-CoV2 suppresses RNAi thus preventing recognition by the encoded ribonuclease dicer protein
Viral suppressors of RNA silencing (VSRs) suppress RNAi at pre or post-dicer level to overcome host defense and establish infection. Cui et al. (2015) from Wuhan University laboratory of virology, identified a novel VSR from coronaviruses (CoVs) including Severe acute respiratory syndrome coronavirus (SARS-CoV) and showed that the coronavirus nucelocaspid protein (N-protein), conserved and expressed in all coronaviruses, suppressed RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. They went on to show using mouse hepatitis virus A-59 (MHV-A59) which is closely linked to SARS-CoV in the family coronaviridae, that the viral replication was increased when the N proteins (novel VSR) were expressed but that knockdown of DICER1 gene or Ago2 transcripts facilitated the viral replication specifically in mammalian cells. They demonstrate that the N-protein of CoVs could efficiently inhibit dicer-mediated dsRNA cleavage and post-Dicer activities by sequestering dsRNAs and siRNAs. Kannan et al. (2020) performed clustal W analysis of N-Protein for SARS-CoV and COVID-19 demonstrating 90% sequence identity from an NCBI amino acid blast of both nucleocapsid (N) protein sequences (figure2). They suggest that the N-protein of COVID-19 may also function as a VSR for RNAi to overcome host defense. Ding et al. (2017) show that both MHV and SARS-CoV N proteins can also disrupt protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein which binds to RIG-I and MDA5 to activate interferon (IFN) production to prevent antiviral host response.

Literature Review
PMID: 17181864: Bennasser and Jeang, 2006
• HIV-1 Tat Interaction With Dicer: Requirement for RNA
• Tat-Dicer interaction depends on RNA, requires the helicase domain of Dicer, and is independent of Tat's transactivation domain.

PMID: 18325616: Chen et al., 2008
• HCV Core Protein Interacts With Dicer to Antagonize RNA Silencing

PMID: 26085159: Cui et al., 2015
• The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

PMID: 24303839: Devasthanam et al, 2014
• This study investigates the role of the dicer protein in immune cell development and function using dicer1 cre-lox knockout models to conditionally ablate dicer1 in different immune cell subsets.

PMID: 28591694: Ding et al., 2017
• The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/MDA5 activation

PMID: 30015086: Ding et al., 2018
• Antiviral RNA Interference in Mammals: Indicates infection of plants and insects with RNA and DNA viruses triggers Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs), which subsequently guide specific virus clearance by RNA interference (RNAi).

PMID: 25176334: Foulkes et al., 2012-REVIEW
• Review of DICER1: DICER1 Mutations, microRNAs and Mechanisms

PMID: 16554838: Galiana-Arnoux et al., 2006
• Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila.
• https://pubmed.ncbi.nlm.nih.gov/16554838/ or https://www.nature.com/articles/ni1335

PMID: 21385408: Inchley et al., 2011
• Investigates ribonuclease Dicer and analyzed the gene expression of Dicer in newborns of which 37 infants had sufficient cord blood RNA with confirmed RSV disease <1yr. Demonstrates significant reduced Dicer expression in cord blood prior to severe disease in infants <1yr later. Conclude downregulation may predispose infants to RSV disease.

PMID: 32141569: Kannan et al., 2020
• COVID-19 (Novel Coronavirus 2019) - Recent Trends
• Perform W cluster analysis of COVID-19 and SARS-CoV nucleocapsid (N) protein sequences of the viruses showing 90% amino acid sequence similarity. Suggest the N-protein may be a VSR in RNAi by targeting DICER.

PMID: 23849790: Klockow et al., 2013
• The HIV-1 Protein Vpr Targets the Endoribonuclease Dicer for Proteasomal Degradation to Boost Macrophage Infection

PMID: 25883138: Kurzynska-Kokorniak et al., 2015
• Investigating the complexity of the mechanisms regulating Dicer gene expression and enzyme activities

PMID: 24115437: Li et al, 2013
• Investigates RNA interference pathways in antiviral immunity in mammals overviewing dicer processing of dsRNA viral replication intermediates into siRNAs.

PMID: 27273616: Machitani et al., 2016
• Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA

PMID: 30872283: Maillard et al., 2019- REVIEW
• Reviewing DICER1 within the anti-viral RNAi pathway in mammals

PMID: 30682089: Modai et al, 2019
• HIV-1 infection increases miRNAs which inhibit Dicer

PMID: 32291557: Mu et al, 2020
• SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells

PMID: 16009718: Muljo et al., 2005
• Indicates absence of dicer results in abberant T-cell differentiation.

PMID: 17613256: Otsuka, et al 2007
• Hypersusceptibility to Vesicular Stomatitis Virus Infection in Dicer1-Deficient Mice Is Due to Impaired miR24 and miR93 Expression

No PMID: Preprint : Pasquier and Rubichon, 2020
• SARS-CoV-2 might manipulate against its host the immunity RNAi/Dicer/Ago system

PMID: 22438534: Qi et al., 2012
• Targeting of Dicer-2 and RNA by a Viral RNA Silencing Suppressor in Drosophila Cells

PMID: 28473628: Song and Rossi, 2017
• Molecular Mechanisms of Dicer: Endonuclease and Enzymatic Activity
COVID-19 research v0.348 DICER1 Rebecca Foulger commented on gene: DICER1: Evidence Summary from Illumina curation team: The DICER1 gene, located on chromosome 14, position q32.13, was discovered in 2001 by Bernstein and is a member of the RNase III family, (also known as dicer 1, ribonuclease III; dicer1, Dcr-1 homolog (Drosophila); multinodular goitre 1). DICER1 is involved in the generation of double-stranded microRNAs (miRNAs), short non-coding RNAs, the cleavage of dsRNA into siRNAs, along with the biogenesis of numerous other small RNAs. There is increasing evidence DICER1 is also involved in regulating many other essential cellular processes such as those related to chromatin remodeling, inflammation, apoptosis and cell survival (Kurzynska-Kokorniak et al. 2015; Song and Rossi, 2017). DICER1 encodes a ∼220-KDa protein (RNase III endoribonuclease) which is a crucial component of the RNA Induced Silencing Complex (RISC) loading complex (RLC), comprised of dicer, Argonaute-2 (AGO-2), and trans-activation-responsive RNA binding protein 2 (TARBP2). The encoded protein is required by the RNA interference (RNAi) and small temporal RNA (stRNA) pathways to produce the active small RNA component which has a role in modulating gene expression at the post-transcriptional level. Research has shown that expression levels of cellular transcript and protein dicer are strictly controlled, with aberrant regulation contributing to carcinogenesis, neurodegenerative, rheumatic and immune system disorders. Studies have concluded that the encoded dicer ribonuclease-dependent processing of dsRNA viral replication intermediates into successive siRNAs is a conserved mammalian immune response to infection by positive-strand RNA viruses (Svobodova et al. 2016 summary & fig1; Li et al. 2013; Ding et al. 2018). Moreover, miRNAs play an important role in host-virus interactions in mammals (See Maillard et al. 2019 REVIEW; Foulkes et al. 2014 REVIEW).

IMMUNE SYSTEM
The cre-lox method for dicer1 gene knockout has been employed for studies into the role of dicer1 in immune cell development and function. Studies of dicer1 fl/fl mice have indicated short survival times along with severely impaired GMP differentiation into monocytes, neutrophils, myeloid DCs & mature macrophages. (Devasthanam et al. 2014). Results conclude that dicer1 is important in immune response and also vital for cell survival and apoptosis pathways. Muljo et al. (2005) investigated a conditional allele of dicer-1 (dcr-1) within a mouse model and showed that specific dcr-1 deletion in the T-cell lineage, resulted in impaired development of T-cells & aberrant cell differentiation of T-helper cells & cytokine production. Dcr-1 deletion in the thymus resulted in severe block in development of CD8+ T cells and resulted in defective microRNA processing in CD4+ T-cells. The results demonstrate Dicer regulates diverse aspects of T-cell biology along with cytokine production during T-cell differentiation where dicer-deficient T-cells preferentially express interferon-ƴ.

VIRUSES
Research by Galiana-Arnoux et al. (2006), of DICER in drosophila (drosophila have two dicer genes) have identified that DICER genes (Dcr1, miRNA pathway and Dcr2, RNAi pathway) control production of siRNA and a loss-of-function mutation in Dcr2 resulted in increased susceptibility to three different families of RNA viruses. Qi et al. (2012) research into RNAi gene silencing mechanism show that the B2 protein in Wuhan nodavirus (WhNV) suppresses Dcr2 in drosophila by direct interaction with the PAZ and RNAse III domains therefore blocking processing of dsRNA and siRNA. Evidence of a dicer antiviral system was also reported by Machitani et al. (2016) for mammalian human adenoviruses where DICER1 gene knockdown increased the copy number of adenovirus-encoding small RNAs (VA-RNAs) leading to the promotion of adenovirus replication; conversely, dicer overexpression significantly inhibited viral replication.
Modai et al. (2019) conclude that HIV-1 infection inhibits DICER1 by altering miRNA expression. They conclude that upon HIV-1 infection, human miR-186, 210 and 222 directly regulate DICER1 gene expression causing down-regulation of the gene contributing to impaired cell-mediated immunity (fig6). Other methods of inhibition are from viral proteins, termed viral suppressors of RNA silencing, which interact and inhibit dicer ribonuclease activity in HIV-1 and hepatitis C infections. These viral proteins may mediate proteasomal degradation of endoribonuclease dicer through CRL4DCAF1 ubiquitin ligase complex (Klockow et al. 2013), interact directly via the core protein (Chen et al. 2008) or HIV-1 transactivation of transcription (Bennasser and Jeang, 2006). Through these methods they can block dicer interactions with TRBP2 or ADAR1, boost macrophage infection, and subsequently reduce the function of short hairpin RNAs (shRNAs) which thus inhibit RNA silencing. Ultimately these viruses, though various methods, supress the ability of dicer to process dsRNAs into siRNAs boosting viral infection and pathogenesis.
Downregulation of DICER1 gene expression has additionally been found in cord blood of infants with severe respiratory syncytial virus (RSV), prior to RSV exposure, indicating this reduced expression may predispose newborns to RSV disease. Inchley et al. (2011) theorize that this occurs via disruption of leukocyte gene regulation of miRNA and direct anti-viral RNAi mechanisms. (Inchley et al. 2011 see section on “Dicer Gene Expression”).
Otsuka et al. (2007) have shown using gene-trap methods to obtain viable dicer1 fl/fl mice where dicer1 deficiency caused impairment of miR24 and miR93 production resulting in susceptibility to vesticular stomatitis virus (VSV) and herpes simplex-1 virus, but not other viruses tested.

SARS CoV & SARS CoV-2
Recently, Pasquier and Robichon, 2020 (preprint) have investigated the Dicer host immunity system regarding SARs-CoV-2 within a computational approach, concluding SARS-CoV2 may manipulate this system of immunity against its host, requiring further research. Mu et al., 2020 suggest SARs-CoV2 suppresses RNAi thus preventing recognition by the encoded ribonuclease dicer protein
Viral suppressors of RNA silencing (VSRs) suppress RNAi at pre or post-dicer level to overcome host defense and establish infection. Cui et al. (2015) from Wuhan University laboratory of virology, identified a novel VSR from coronaviruses (CoVs) including Severe acute respiratory syndrome coronavirus (SARS-CoV) and showed that the coronavirus nucelocaspid protein (N-protein), conserved and expressed in all coronaviruses, suppressed RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. They went on to show using mouse hepatitis virus A-59 (MHV-A59) which is closely linked to SARS-CoV in the family coronaviridae, that the viral replication was increased when the N proteins (novel VSR) were expressed but that knockdown of DICER1 gene or Ago2 transcripts facilitated the viral replication specifically in mammalian cells. They demonstrate that the N-protein of CoVs could efficiently inhibit dicer-mediated dsRNA cleavage and post-Dicer activities by sequestering dsRNAs and siRNAs. Kannan et al. (2020) performed clustal W analysis of N-Protein for SARS-CoV and COVID-19 demonstrating 90% sequence identity from an NCBI amino acid blast of both nucleocapsid (N) protein sequences (figure2). They suggest that the N-protein of COVID-19 may also function as a VSR for RNAi to overcome host defense. Ding et al. (2017) show that both MHV and SARS-CoV N proteins can also disrupt protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein which binds to RIG-I and MDA5 to activate interferon (IFN) production to prevent antiviral host response.

Literature Review
PMID: 17181864: Bennasser and Jeang, 2006
• HIV-1 Tat Interaction With Dicer: Requirement for RNA
• Tat-Dicer interaction depends on RNA, requires the helicase domain of Dicer, and is independent of Tat's transactivation domain.

PMID: 18325616: Chen et al., 2008
• HCV Core Protein Interacts With Dicer to Antagonize RNA Silencing

PMID: 26085159: Cui et al., 2015
• The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

PMID: 24303839: Devasthanam et al, 2014
• This study investigates the role of the dicer protein in immune cell development and function using dicer1 cre-lox knockout models to conditionally ablate dicer1 in different immune cell subsets.

PMID: 28591694: Ding et al., 2017
• The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/MDA5 activation

PMID: 30015086: Ding et al., 2018
• Antiviral RNA Interference in Mammals: Indicates infection of plants and insects with RNA and DNA viruses triggers Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs), which subsequently guide specific virus clearance by RNA interference (RNAi).

PMID: 25176334: Foulkes et al., 2012-REVIEW
• Review of DICER1: DICER1 Mutations, microRNAs and Mechanisms

PMID: 16554838: Galiana-Arnoux et al., 2006
• Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila.
• https://pubmed.ncbi.nlm.nih.gov/16554838/ or https://www.nature.com/articles/ni1335

PMID: 21385408: Inchley et al., 2011
• Investigates ribonuclease Dicer and analyzed the gene expression of Dicer in newborns of which 37 infants had sufficient cord blood RNA with confirmed RSV disease <1yr. Demonstrates significant reduced Dicer expression in cord blood prior to severe disease in infants <1yr later. Conclude downregulation may predispose infants to RSV disease.

PMID: 32141569: Kannan et al., 2020
• COVID-19 (Novel Coronavirus 2019) - Recent Trends
• Perform W cluster analysis of COVID-19 and SARS-CoV nucleocapsid (N) protein sequences of the viruses showing 90% amino acid sequence similarity. Suggest the N-protein may be a VSR in RNAi by targeting DICER.

PMID: 23849790: Klockow et al., 2013
• The HIV-1 Protein Vpr Targets the Endoribonuclease Dicer for Proteasomal Degradation to Boost Macrophage Infection

PMID: 25883138: Kurzynska-Kokorniak et al., 2015
• Investigating the complexity of the mechanisms regulating Dicer gene expression and enzyme activities

PMID: 24115437: Li et al, 2013
• Investigates RNA interference pathways in antiviral immunity in mammals overviewing dicer processing of dsRNA viral replication intermediates into siRNAs.

PMID: 27273616: Machitani et al., 2016
• Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA

PMID: 30872283: Maillard et al., 2019- REVIEW
• Reviewing DICER1 within the anti-viral RNAi pathway in mammals

PMID: 30682089: Modai et al, 2019
• HIV-1 infection increases miRNAs which inhibit Dicer

PMID: 32291557: Mu et al, 2020
• SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells

PMID: 16009718: Muljo et al., 2005
• Indicates absence of dicer results in abberant T-cell differentiation.

PMID: 17613256: Otsuka, et al 2007
• Hypersusceptibility to Vesicular Stomatitis Virus Infection in Dicer1-Deficient Mice Is Due to Impaired miR24 and miR93 Expression

No PMID: Preprint : Pasquier and Rubichon, 2020
• SARS-CoV-2 might manipulate against its host the immunity RNAi/Dicer/Ago system

PMID: 22438534: Qi et al., 2012
• Targeting of Dicer-2 and RNA by a Viral RNA Silencing Suppressor in Drosophila Cells

PMID: 28473628: Song and Rossi, 2017
• Molecular Mechanisms of Dicer: Endonuclease and Enzymatic Activity
COVID-19 research v0.348 CCR2 Rebecca Foulger changed review comment from: Evidence Summary from Illumina curation team:
CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).
PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).; to: Evidence Summary from Illumina curation team: CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).

PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).
COVID-19 research v0.348 CCR2 Rebecca Foulger changed review comment from: Evidence Summary from Illumina curation team: CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).
PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).; to: Evidence Summary from Illumina curation team:
CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).
PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).
COVID-19 research v0.348 CCR2 Rebecca Foulger commented on gene: CCR2: Evidence Summary from Illumina curation team: CCR2 is a chemokine receptor highly expressed on monocytes which is critical for bone marrow egress of classic monocytes and trafficking to sites of inflammation. Ccr2 deficiency in mice markedly increases mortality in West Nile virus encephalitis, with Ccr2-/- mice showing sustained monocytopenia, reduced accumulation of monocytes in the brain and an increase in cerebral viral load (Lim et al, 2011). CCR2 has been reported to mediate increased susceptibility to post-H1N1 bacterial pneumonia by limiting dendritic cell induction of IL-17 (Gurczynski et al, 2019). Nine SNPs in the CCR2 gene have been associated with susceptibility to and severity of several diseases including HIV and hepatitis C virus infection (Stone et al, 2017 Review; Ngoufack et al, 2019).
PMID: 21131425; Lim et al, 2011 - Ccr2-deficiency resulted in markedly increased mortality (~20% survival). This was associated with increased viral load in the CNS of Ccr2-deficient mice on day 12 post-infection. This appeared to be specific to the brain and not in the blood. Monocyte accumulation is strongly reduced in Ccr2-/- mice. Brain tissue from infected Ccr2−/− mice showed markedly fewer immunoreactive cells as evaluated by immunohistochemistry analysis (Fig4).

PMID: 30498200; Gurczynski et al, 2019 - H1N1 infected CCR2−/− mice had significantly higher survival as compared to H1N1 infected WT mice which is associated with significantly improved bacterial clearance at 24 and 48 hours (10 fold and 14 fold, respectively) post-bacterial challenge (with MRSA). In comparison to WT H1N1 infected mice, CCR2−/− mice recruited ~3-fold more IL-17 producing γδ-T cells and ~2.5-fold more Th17 cells (Figure 4B). Expression of CCL2 (MCP-1) in the lung is increased following H1N1 infection or H1N1 / MRSA dual infection as measured via qRT-PCR (Fig1).
COVID-19 research v0.341 CCR2 Alison Coffey reviewed gene: CCR2: Rating: GREEN; Mode of pathogenicity: ; Publications: 21131425, 30498200, 28178200, 31777682; Phenotypes: ; Mode of inheritance:
COVID-19 research v0.336 CCR2 Rebecca Foulger commented on gene: CCR2
COVID-19 research v0.333 CCR2 Rebecca Foulger gene: CCR2 was added
gene: CCR2 was added to COVID-19 research. Sources: Expert list,OMIM,Expert Review Green
Mode of inheritance for gene: CCR2 was set to Unknown
COVID-19 research v0.204 HAVCR2 Sarah Leigh Classified gene: HAVCR2 as Green List (high evidence)
COVID-19 research v0.204 HAVCR2 Sarah Leigh Gene: havcr2 has been classified as Green List (High Evidence).
COVID-19 research v0.171 HAVCR2 Sophie Hambleton reviewed gene: HAVCR2: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Panniculitis, T-cell lymphoma, haemophagocytic lymphohistiocytosis; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
COVID-19 research v0.85 CCL2 Rebecca Foulger commented on gene: CCL2: PMID:29057937 (Chowdhury and Khan, 2017) report that SNPs of CCL2 (rs1024611G) and its receptor CCR2 (rs1799864A) significantly associated with Japanese encephalitis (JE) which may serve as possible genetic predisposing factor. JE is one of the major viral encephalitis in Asia and parts of Western Pacific.
COVID-19 research v0.47 CCL2 Rebecca Foulger commented on gene: CCL2: PMID:27260136 (Kim et al., 2016) report that CCL2 ablation highly increased susceptibility to Japanese encephalitis, indicating that CCL2 plays an essential role in conferring protection against JE caused by JE virus (JEV) infection. They also note a surprising opposite effect for ablation of the CCR2 (the corresponding receptor).
COVID-19 research v0.40 HAVCR2 Ellen McDonagh Source Expert Review Green was added to HAVCR2.
Added phenotypes T-cell lymphoma, subcutaneous panniculitis-like, 618398; Tim-3 deficiency; T-cell lymphoma, subcutaneous panniculitis-like, HLH; Autoinflammatory Disorders for gene: HAVCR2
Rating Changed from Red List (low evidence) to Green List (high evidence)
COVID-19 research v0.40 CR2 Ellen McDonagh Source Expert Review Green was added to CR2.
Added phenotypes Recurrent infections; Lupus; Isolated IgG subclass deficiency; Immunodeficiency, common variable, 7; Common variable immunodeficiency disorders (CVID); hypogammaglobulinaemia; Predominantly Antibody Deficiencies; Immunodeficiency, common variable, 7, 614699 for gene: CR2
Rating Changed from Amber List (moderate evidence) to Green List (high evidence)
COVID-19 research v0.36 HAVCR2 Ellen McDonagh gene: HAVCR2 was added
gene: HAVCR2 was added to Viral susceptibility. Sources: IUIS Classification December 2019
Mode of inheritance for gene: HAVCR2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HAVCR2 were set to 30792187; 32086639; 32048120; 30374066
Phenotypes for gene: HAVCR2 were set to T-cell lymphoma, subcutaneous panniculitis-like, 618398; Tim-3 deficiency; T-cell lymphoma, subcutaneous panniculitis-like, HLH; Autoinflammatory Disorders
COVID-19 research v0.36 CR2 Ellen McDonagh gene: CR2 was added
gene: CR2 was added to Viral susceptibility. Sources: ESID Registry 20171117,Victorian Clinical Genetics Services,GRID V2.0,A- or hypo-gammaglobulinaemia v1.25,IUIS Classification February 2018,Expert Review Amber
Mode of inheritance for gene: CR2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CR2 were set to 22035880; 26325596
Phenotypes for gene: CR2 were set to Recurrent infections; Lupus; Isolated IgG subclass deficiency; Immunodeficiency, common variable, 7; Common variable immunodeficiency disorders (CVID); hypogammaglobulinaemia; Predominantly Antibody Deficiencies; Immunodeficiency, common variable, 7, 614699