Activity

Filter

Cancel
Date Panel Item Activity
7 actions
COVID-19 research v0.347 ATG5 Alison Coffey commented on gene: ATG5: Evidence Summary from Illumina curation team: The ATG5 gene encodes a core autophagy protein which forms a complex with ATG12 and ATG16L that is important for autophagophore elongation. Autophagy plays a key antiviral role in various human infections by modulating different aspects of the immune response (Reviewed Tao et al. 2020; Ahmed et al.2018). ATG5 may play a role in cytokine regulation, in vitro, ATG5 depleted primary human blood macrophages produced lower levels of CXCL10 and IFNa when infected with influenza A virus (Law et al. 2007). ATG5 deficient mice also show reduced Ifn and Il22 secretion when infected with the single stranded RNA vesicular stomatitis virus (VSV) (Lee et al. 2007). Using a mouse model with a conditional depletion of ATG5 within dendritic cells, Lee et al. 2010 showed that ATG5 is required for antigen presentation by dendritic cells, as a result of reduced MHC-II antigen presentation, these mice, when intradermally injected with HSV-1, showed significantly lower IFNgamma production by CD4+ T cells. (Lee et al., 2010). The ATG5 complex is targeted by some viruses to enhance infection, for example, the foot and mouth disease virus (FMDV) targets the ATG5-ATG12 complex for degradation through its viral protein 3Cpro, similarly, depletion of ATG5 and ATG12 in vitro, by siRNA increased susceptibility to FMDV infection by reducing activation of the NF-?B and IRF3 pathways (Fan et al 2017).
COVID-19 research v0.295 PQBP1 Eleanor Williams gene: PQBP1 was added
gene: PQBP1 was added to COVID-19 research. Sources: Literature
Mode of inheritance for gene: PQBP1 was set to Unknown
Publications for gene: PQBP1 were set to 26046437
Review for gene: PQBP1 was set to RED
Added comment: Not associated with a viral susceptibility phenotype in OMIM.

PMID: 26046437 - Yoh et al 2015 - found PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response
Sources: Literature
COVID-19 research v0.221 DDX58 Sarah Leigh gene: DDX58 was added
gene: DDX58 was added to Viral susceptibility. Sources: Literature
Mode of inheritance for gene: DDX58 was set to Unknown
Publications for gene: DDX58 were set to 21939710; 16625202
Added comment: PMID 21939710 found DDX5 (formerly known as RIGI) was essential for virus-induced expression of IRF3 and concluded that DDX5 is essential for detection and eradication of replicating viral genomes. PMID 16625202 reported that DDX58 is essential for the production of interferons in response to certain RNA viruses including paramyxoviruses, influenza virus, and Japanese encephalitis virus.
Sources: Literature
COVID-19 research v0.160 TLR3 Abdelazeem Elhabyan changed review comment from: These studies demonstrate the deleterious effect of some TLR3 mutations and predisposition to Herpes simplex encephalitis in 4 separate studies on unrelated patients from different countries. TLR3 mutations in 3 children were associated with severe influenza pneumonitis. Finally, 2 other studies evaluate the protective effect of a common polymorphism of TLR3 against HIV infection in repetitively exposed individuals. Accordingly, we might find protective or deleterious effects in COVID19 patients due to different mutations of TLR3.

TLR3 is a receptor for dsRNA (intermediate in the replication of many viruses including HSV) which induces IFN response to prevent the cytopathic effects of different viruses. A heterozygous dominant-negative mutation of TLR3 was discovered in 2 unrelated children with HSE. TLR3 mutant fibroblasts from the 2 patients were infected by HSV-1 and vesicular stomatitis virus(VSV).IFNB and IFNL production were impaired in those cells, viral replication was higher and cell survival was lower in the 2 patients' cells when compared with the controls. Blood leukocyte response normally with to poly (I:C) which explains why the disease is not disseminated and also explains the redundant role of TLR3 in blood cells(13).
Similar findings were reported in a polish child in 2011, however, the patient here was compound heterozygous for a missense mutation leading to autosomal recessive inheritance of TLR3 deficiency(14).
Treatment with IFN alpha and beta canceled the effect of the dominant-negative mutation increasing the causality relationship between TLR3 mutants and viral immune response(13).
Relatives of the 2 patients with the same mutation did not show decreased interferon response nor they showed HSE as a complication of HSV which means that this mutation does not have full penetrance(13).

In another study, 110 patients with HSE were sequenced (exons of TLR3) to establish a new association of TLR3 mutations and HSE. The study reported 5 novel variants other than those previously described in the literature. 2 of them were not pathogenically demonstrated by in vitro studies while 3 of them were pathogenic with similar findings to those described above. Additionally, they found 3 patients with the same mutations previously described in the literature so the total of patients with deleterious TLR3 mutations would be 6 out of 110. 4 of those 6 patients(66%) with TLR6 mutations had a relapse In contrast to 12 out of 120(total cohort) (10%)(15).

In a recent study done on 16 patients with adult-onset HSE using whole-exome sequencing(WES), 1 patient was discovered to have TLR3 deficiency, while 8 other patients had mutations in other genes in the TLR3 pathway(2 patients with a mutation in IRF3, 2 patients with mutations in STAT1, 2 patients with mutations in TRIF, 1 patient with a mutation in TYK2,1 patients with a mutation in MAVS, and finally 1 patient with a mutation in TBK1)(16)

A common polymorphism in TLR3(rs3775291) was linked to increased resistance to HIV1 infection by the genotyping study of Spanish and Italian cohorts with a P value of .023 and .029 respectively. The study compared HIV exposed seronegative cohort(IV drug abuse and sexually active ) with controls. Repetitive HIV exposure in the cohort was evidenced by HCV seropositivity. In vitro infection of PBMCs with HIV showed increased resistance in cells carrying the allele and also TLR3 stimulation by TLR3 agonists showed an increased level of expression of CD69, IL-6, and CCL3(17).

A similar study was conducted on the Caucasian population showing the protective effect of the allele against HIV infection(18).

Autosomal recessive IRF7 and IRF9 deficiencies impair type I and III IFN immunity and underlie severe influenza pneumonitis. We report three unrelated children with influenza A virus (IAV) infection manifesting as acute respiratory distress syndrome (IAV-ARDS), heterozygous for rare TLR3 variants (P554S in two patients and P680L in the third) causing autosomal dominant (AD) TLR3 deficiency. AD TLR3 deficiency can underlie herpes simplex virus-1 (HSV-1) encephalitis (HSE) by impairing cortical neuron-intrinsic type I IFN immunity to HSV-1. TLR3-mutated leukocytes produce normal levels of IFNs in response to IAV. In contrast, TLR3-mutated fibroblasts produce lower levels of IFN-β and -λ, and display enhanced viral susceptibility, upon IAV infection. Moreover, the patients’ iPSC-derived pulmonary epithelial cells (PECs) are susceptible to IAV. Treatment with IFN-α2b or IFN-λ1 rescues this phenotype. AD TLR3 deficiency may thus underlie IAV-ARDS by impairing TLR3-dependent, type I, and/or III IFN–mediated, PEC-intrinsic immunity. Its clinical penetrance is incomplete for both IAV-ARDS and HSE, consistent with their typically sporadic nature(PMID: 31217193
)




13.Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–1527. doi:10.1126/science.1139522

14.Guo Y, Audry M, Ciancanelli M, et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med. 2011;208(10):2083–2098. doi:10.1084/jem.20101568

15.Lim HK, Seppänen M, Hautala T, et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology. 2014;83(21):1888–1897. doi:10.1212/WNL.0000000000000999

16.Mørk N, Kofod-Olsen E, Sørensen KB, et al. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun. 2015;16(8):552–566. doi:10.1038/gene.2015.46

17.Sironi M, Biasin M, Cagliani R, et al. A common polymorphism in TLR3 confers natural resistance to HIV-1 infection. J Immunol. 2012;188(2):818–823. doi:10.4049/jimmunol.1102179

18.Huik K, Avi R, Pauskar M, et al. Association between TLR3 rs3775291 and resistance to HIV among highly exposed Caucasian intravenous drug users. Infect Genet Evol. 2013;20:78–82. doi:10.1016/j.meegid.2013.08.008

19.Lim HK, Huang SXL, Chen J, et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. 2019;216(9):2038–2056. doi:10.1084/jem.20181621; to: These studies demonstrate the deleterious effect of some TLR3 mutations and predisposition to Herpes simplex encephalitis in 4 separate studies on unrelated patients from different countries. TLR3 mutations in 3 children were associated with severe influenza pneumonitis. Finally, 2 other studies evaluate the protective effect of a common polymorphism of TLR3 against HIV infection in repetitively exposed individuals. Accordingly, we might find protective or deleterious effects in COVID19 patients due to different mutations of TLR3.

TLR3 is a receptor for dsRNA (intermediate in the replication of many viruses including HSV) which induces IFN response to prevent the cytopathic effects of different viruses. A heterozygous dominant-negative mutation of TLR3 was discovered in 2 unrelated children with HSE. TLR3 mutant fibroblasts from the 2 patients were infected by HSV-1 and vesicular stomatitis virus(VSV).IFNB and IFNL production were impaired in those cells, viral replication was higher and cell survival was lower in the 2 patients' cells when compared with the controls. Blood leukocyte response normally with to poly (I:C) which explains why the disease is not disseminated and also explains the redundant role of TLR3 in blood cells(13).
Similar findings were reported in a polish child in 2011, however, the patient here was compound heterozygous for a missense mutation leading to autosomal recessive inheritance of TLR3 deficiency(14).
Treatment with IFN alpha and beta canceled the effect of the dominant-negative mutation increasing the causality relationship between TLR3 mutants and viral immune response(13).
Relatives of the 2 patients with the same mutation did not show decreased interferon response nor they showed HSE as a complication of HSV which means that this mutation does not have full penetrance(13).

In another study, 110 patients with HSE were sequenced (exons of TLR3) to establish a new association of TLR3 mutations and HSE. The study reported 5 novel variants other than those previously described in the literature. 2 of them were not pathogenically demonstrated by in vitro studies while 3 of them were pathogenic with similar findings to those described above. Additionally, they found 3 patients with the same mutations previously described in the literature so the total of patients with deleterious TLR3 mutations would be 6 out of 110. 4 of those 6 patients(66%) with TLR6 mutations had a relapse In contrast to 12 out of 120(total cohort) (10%)(15).

In a recent study done on 16 patients with adult-onset HSE using whole-exome sequencing(WES), 1 patient was discovered to have TLR3 deficiency, while 8 other patients had mutations in other genes in the TLR3 pathway(2 patients with a mutation in IRF3, 2 patients with mutations in STAT1, 2 patients with mutations in TRIF, 1 patient with a mutation in TYK2,1 patients with a mutation in MAVS, and finally 1 patient with a mutation in TBK1)(16)

A common polymorphism in TLR3(rs3775291) was linked to increased resistance to HIV1 infection by the genotyping study of Spanish and Italian cohorts with a P value of .023 and .029 respectively. The study compared HIV exposed seronegative cohort(IV drug abuse and sexually active ) with controls. Repetitive HIV exposure in the cohort was evidenced by HCV seropositivity. In vitro infection of PBMCs with HIV showed increased resistance in cells carrying the allele and also TLR3 stimulation by TLR3 agonists showed an increased level of expression of CD69, IL-6, and CCL3(17).

A similar study was conducted on the Caucasian population showing the protective effect of the allele against HIV infection(18).

Autosomal recessive IRF7 and IRF9 deficiencies impair type I and III IFN immunity and underlie severe influenza pneumonitis. We report three unrelated children with influenza A virus (IAV) infection manifesting as acute respiratory distress syndrome (IAV-ARDS), heterozygous for rare TLR3 variants (P554S in two patients and P680L in the third) causing autosomal dominant (AD) TLR3 deficiency. AD TLR3 deficiency can underlie herpes simplex virus-1 (HSV-1) encephalitis (HSE) by impairing cortical neuron-intrinsic type I IFN immunity to HSV-1. TLR3-mutated leukocytes produce normal levels of IFNs in response to IAV. In contrast, TLR3-mutated fibroblasts produce lower levels of IFN-β and -λ, and display enhanced viral susceptibility, upon IAV infection. Moreover, the patients’ iPSC-derived pulmonary epithelial cells (PECs) are susceptible to IAV. Treatment with IFN-α2b or IFN-λ1 rescues this phenotype. AD TLR3 deficiency may thus underlie IAV-ARDS by impairing TLR3-dependent, type I, and/or III IFN–mediated, PEC-intrinsic immunity. Its clinical penetrance is incomplete for both IAV-ARDS and HSE, consistent with their typically sporadic nature(PMID: 31217193
)




13.Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–1527. doi:10.1126/science.1139522

14.Guo Y, Audry M, Ciancanelli M, et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med. 2011;208(10):2083–2098. doi:10.1084/jem.20101568

15.Lim HK, Seppänen M, Hautala T, et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology. 2014;83(21):1888–1897. doi:10.1212/WNL.0000000000000999

16.Mørk N, Kofod-Olsen E, Sørensen KB, et al. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun. 2015;16(8):552–566. doi:10.1038/gene.2015.46

17.Sironi M, Biasin M, Cagliani R, et al. A common polymorphism in TLR3 confers natural resistance to HIV-1 infection. J Immunol. 2012;188(2):818–823. doi:10.4049/jimmunol.1102179

18.Huik K, Avi R, Pauskar M, et al. Association between TLR3 rs3775291 and resistance to HIV among highly exposed Caucasian intravenous drug users. Infect Genet Evol. 2013;20:78–82. doi:10.1016/j.meegid.2013.08.008

19.Lim HK, Huang SXL, Chen J, et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. 2019;216(9):2038–2056. doi:10.1084/jem.20181621
COVID-19 research v0.40 IRF3 Ellen McDonagh Source Expert Review Green was added to IRF3.
Added phenotypes {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 7}, 616532; Herpes simplex virus 1 encephalitis; Defects in Intrinsic and Innate Immunity for gene: IRF3
Rating Changed from Amber List (moderate evidence) to Green List (high evidence)
COVID-19 research v0.36 IRF3 Ellen McDonagh Mode of inheritance for gene IRF3 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Added phenotypes {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 7}, 616532; Herpes simplex virus 1 encephalitis; Defects in Intrinsic and Innate Immunity for gene: IRF3
Publications for gene IRF3 were updated from to 32086639; 26513235; 32048120; 26216125
COVID-19 research v0.27 IRF3 Ellen McDonagh gene: IRF3 was added
gene: IRF3 was added to Viral susceptibility. Sources: Expert list,Expert Review Amber
Mode of inheritance for gene: IRF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: IRF3 were set to {Encephalopathy, acute, infection-induced (herpes-specific), susceptibility to, 7}, MIM616532