Activity

Filter

Cancel
Date Panel Item Activity
4 actions
COVID-19 research v0.347 MX2 Alison Coffey commented on gene: MX2: Evidence Summary from Illumina curation team: MX2, also known as MXB is an interferon-induced dynamin like GTPAse with antiviral activity, which has been shown to affect the nuclear uptake and/or stability of the HIV-1 replication complex and the subsequent chromosomal integration of the proviral DNA (Goujon et al. 2013, Liu et al. 2015). However, resistance of several HIV strains to MX2-driven inhibition has been reported (Liu et al. 2015). Inhibition of other viruses, including HCV, Japanese encephalitis virus and Dengue virus of the Flaviviridae family as well as simian immunodeficiency virus and Herpesviruses has been reported (Goujon et al. 2013, Yi et al. 2019). In contrast to MX1, MX2 does not appear to be involved in regulation of several other viral infections, including influenza and Zika virus (Melen et al. 1996; Yi et al. 2019). Additionally, MX2 may be involved in nucleocytoplasmic transport and bears a nuclear localisation signal that appears essential for HCV inhibition (Melen et al. 1996; King et al. 2004, Yi et al. 2019). Of note, MX2 was described as an interferon response marker gene in preprint studies investigating expression profiles and related mechanisms in SARS-CoV-2 infection (Fagone et al. 2020, Li et al. 2020). Overall, inhibition of viral infection by MX2 appears to be virus type- and strain-specific, and some viruses potentially have developed mechanisms to resist MX2 function. No reports of any SNP associations of MX2 with viral susceptibility in humans have been identified.
COVID-19 research v0.217 MX1 Sarah Leigh gene: MX1 was added
gene: MX1 was added to Viral susceptibility. Sources: Literature
Mode of inheritance for gene: MX1 was set to Unknown
Publications for gene: MX1 were set to 3162334; 14872030; 21935451; https://doi.org/10.1101/2020.05.04.075911
Review for gene: MX1 was set to AMBER
Added comment: MX1 is an interferon-induced protein with antiviral activity (PMID 3162334).
PMID 14872030 c.-88G>T was more frequent in 40 unrelated Japanese patients with subacute sclerosing panencephalitisis (associated with CNS infection with measles virus), than in 90 controls (0.42 in patients vs 0.29 in controls). Variant c.-88G>T results increased MX1 expression, the authors suggest that MX1 may paradoxically enable persistence of the virus in the CNS by attenuating viral gene expression and preventing complete immunologic clearance.
PMID 21935451 concluded that genetic variation in the interferon response pathway is associated with risk for symptomatic West Nile viru infection and disease progression.
Preprint https://doi.org/10.1101/2020.05.04.075911 Reports that rs35074065 of TMPRSS2 results in increased expression of the nearby gene MX1.
Sources: Literature
COVID-19 research v0.214 TMPRSS2 Sarah Leigh changed review comment from: Preprint https://doi.org/10.1101/2020.05.04.075911 reports rs35074065 of TMPRSS2 results in the overexpression of both TMPRSS2 and a nearby gene MX1. rs35074065 overlaps with a transcription factor binding site of an activator (IRF1) and a repressor (IRF2). IRF1 activator can bind to variant delC allele, but IRF2 repressor fails to bind. Thus, in an individual carrying the delC allele, there is only activation, but no repression. On viral entry, IRF1 mediated upregulation of MX1 leads to neutrophil infiltration and processing of 614G mutated Spike protein by neutrophil Elastase. The simultaneous processing of 614G spike protein by TMPRSS2 and Elastase serine proteases facilitates the entry of the 614G subtype into host cells. Thus, SARS-CoV-2, particularly the 614G subtype, has spread more easily and with higher frequency to Europe and North America where the delC allele regulating expression of TMPRSS2 and MX1 host proteins is common, but not to East Asia where this allele is rare.; to: Preprint https://doi.org/10.1101/2020.05.04.075911 reports rs35074065 of TMPRSS2 results in the overexpression of both TMPRSS2 and a nearby gene MX1. rs35074065 overlaps with a transcription factor binding site of an activator (IRF1) and a repressor (IRF2). IRF1 activator can bind to variant delC allele, but IRF2 repressor fails to bind. Thus, in an individual carrying the delC allele of rs35074065, there is only activation, but no repression. On viral entry, IRF1 mediated upregulation of MX1 leads to neutrophil infiltration and processing of 614G variant viral Spike protein by neutrophil Elastase. The simultaneous processing of 614G spike protein by TMPRSS2 and Elastase serine proteases facilitates the entry of the 614G subtype into host cells. Thus, SARS-CoV-2, particularly the 614G subtype, has spread more easily and with higher frequency to Europe and North America where the delC allele regulating expression of TMPRSS2 and MX1 host proteins is common, but not to East Asia where this allele is rare.
COVID-19 research v0.165 TMPRSS2 Rebecca Foulger commented on gene: TMPRSS2: Preprint http://biorxiv.org/cgi/content/short/2020.04.23.057190 analysed coding region variants in TMPRSS2 and the eQTL variants which may affect gene experssion. They suggest that lung-specific eQTL variants may confer different susceptibility or response to SARS-CoV-2 infection from different populations. In particular, we found that the regulatory region variant rs35074065 is associated with high expression of TMPRSS2 (but lower expression of MX1).