Activity

Filter

Cancel
Date Panel Item Activity
2 actions
COVID-19 research v0.364 TLR4 Sarah Leigh changed review comment from: TLR4 was identified through an OMIM search for potential viral susceptibility genes. Based on initial triage by Illumina (Tier 5 grouping).
PMID 1106249 found that proinflammatory cytokine responses to respiratory syncytial virus (RSV) F protein were reduced in mice with deletions of Tlr4. The lungs of Tlr4 -/- mice had high levels of infectious virus and were either unable to clear the virus or took longer to clear it, in comparison with wt mice. Suggesting that TLR4 is involved in innate immune responses to viruses (reviewed by Alison Coffey and team, Illumina).
PMID 17579031 showed that: production of IL8, IL6, and other cytokines in response to RSV was reduced in bronchial epithelial cells transfected with TLR4 constructs containing rs4986790 p.D299G or rs4986791 p.T399I, compared with cells expressing TLR4 with major alleles. The authors suggest that these variants compromise the first-line defense against RSV and confer increased susceptibility to severe bronchiolitis after RSV infection.
PMID 17709532 also found that the same minor alleles were assosiated with symptomatic RSV disease in a mostly premature population, with 89.5% and 87.6% of patients being heterozygous for p.D299G and p.T399I compared with control frequencies of 10.5% and 6.5%, respectively.

PMID 32383269 reports that: cell surface TLR4 is most likely to be involved in recognizing molecular patterns from SARS‐CoV‐2 and speculates that selective targeting of TLR4‐spike protein interaction by designing competitive TLR4‐antagonists could pave a new way to treat COVID‐19.; to: TLR4 was identified through an OMIM search for potential viral susceptibility genes. Based on initial triage by Illumina (Tier 5 grouping).
PMID 1106249 found that proinflammatory cytokine responses to respiratory syncytial virus (RSV) F protein were reduced in mice with deletions of Tlr4. The lungs of Tlr4 -/- mice had high levels of infectious virus and were either unable to clear the virus or took longer to clear it, in comparison with wt mice. Suggesting that TLR4 is involved in innate immune responses to viruses (reviewed by Alison Coffey and team, Illumina).
PMID 17579031 showed that: production of IL8, IL6, and other cytokines in response to RSV was reduced in bronchial epithelial cells transfected with TLR4 constructs containing rs4986790 p.D299G or rs4986791 p.T399I, compared with cells expressing TLR4 with major alleles. The authors suggest that these variants compromise the first-line defense against RSV and confer increased susceptibility to severe bronchiolitis after RSV infection.
PMID 17709532 also found that the same minor alleles were assosiated with symptomatic RSV disease in a mostly premature population, with 89.5% and 87.6% of patients being heterozygous for p.D299G and p.T399I compared with control frequencies of 10.5% and 6.5%, respectively.
PMID 32391647 reports: Hyperactivated B cell and TLR4 signalling pathway were observed in WT HBV-carrier mice, while TLR4 ablation failed to induce B cell hyperactivation, and downstream MyD88 and NF-κB were also not altered. Taken together, TLR4 pathway plays a pivotal role in B cell hyperactivation during CHB, which might serve as a promising target for B cell function restoration.
PMID 32383269 reports that: cell surface TLR4 is most likely to be involved in recognizing molecular patterns from SARS‐CoV‐2 and speculates that selective targeting of TLR4‐spike protein interaction by designing competitive TLR4‐antagonists could pave a new way to treat COVID‐19.
COVID-19 research v0.36 MYD88 Ellen McDonagh gene: MYD88 was added
gene: MYD88 was added to Viral susceptibility. Sources: Expert Review Green,ESID Registry 20171117,North West GLH,Victorian Clinical Genetics Services,GRID V2.0,NHS GMS,London North GLH,A- or hypo-gammaglobulinaemia v1.25,IUIS Classification February 2018
Mode of inheritance for gene: MYD88 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MYD88 were set to 18669862; 23215570
Phenotypes for gene: MYD88 were set to recurrent pyogenic bacterial infection; Defects of TLR/NFkappa-B signalling; Defects in Intrinsic and Innate Immunity; Bacterial infections (pyogens); Pyogenic bacterial infections, recurrent, due to MYD88 deficiency 612260