Activity

Filter

Cancel
Date Panel Item Activity
4 actions
COVID-19 research v0.348 PTX3 Rebecca Foulger commented on gene: PTX3: Evidence Summary from Illumina curation team (Alison Coffey and Julie Taylor): Pentraxins are a superfamily of conserved humoral mediators of innate immunity. PTX3, the prototypic long pentraxin, is a soluble pattern recognition molecule produced by several cell types in response to primary pro-inflammatory signals and microbial recognition. It is involved in the initiation of protective responses against select pathogens, acting as an important mediator of innate immunity against pathogens of fungal, bacterial and viral origin, and as a regulator of inflammation, by modulating complement activation and cell extravasation, and facilitating pathogen recognition by myeloid cells. It is an established biomarker in sepsis, with PTX3 plasma levels associated with severity of the condition, patient survival, and response to therapy.

PTX3 has been characterized as a biomarker of severity and outcomes in different infections caused by bacteria, fungi or viruses. Patients with pulmonary aspergillosis, tuberculosis, dengue virus infection, meningococcal disease leptospirosis and shigellosis have increased PTX3 plasma levels that correlate with disease severity and could act as predictor of unfavourable outcomes (PMID 31031772: Porte et al. 2019). Several studies using Ptx3-deficient mice showed an increased susceptibility to fungal, bacterial and viral pathogens (Porte et al. 2019). In contrast, a study in PTX3-deficient (PTX3(-/-)) mice acutely infected with RRV exhibited delayed disease progression and rapid recovery through diminished inflammatory responses and viral replication (Foo et al. 2015). PTX3 administration has shown to be protective also against infections with Influenza virus, murine cytomegalovirus, Neisseria meningitidis, and P. aeruginosa in neonates and during chronic infections by reducing viral load and inflammatory pathology. (PMID 31031772: Porte et al. 2019, PMD 18292565: Reading et al. 2008).

PMID: 25695775: Foo et al. (2015) - Found that pentraxin 3 (PTX3) was highly expressed in chikungunya virus (CHIKV) and Ross River virus (RRV) patients during acute disease. Overt expression of PTX3 in CHIKV patients was associated with increased viral load and disease severity. PTX3-deficient (PTX3(-/-)) mice acutely infected with RRV exhibited delayed disease progression and rapid recovery through diminished inflammatory responses and viral replication. Furthermore, binding of the N-terminal domain of PTX3 to RRV facilitated viral entry and replication.

PMID: 18292565 - Reading et al. (2008) - Identified the long pentraxin PTX3 as a potent innate inhibitor of influenza viruses both in vitro and in vivo. Human and murine PTX3 bound to influenza virus and mediated a range of antiviral activities, including inhibition of hemagglutination, neutralization of virus infectivity and inhibition of viral neuraminidase. Antiviral activity was associated with binding of the viral hemagglutinin glycoprotein to sialylated ligands present on PTX3. Using a mouse model found PTX3 to be rapidly induced following influenza infection and that PTX3-/- mice were more susceptible than wild-type mice to infection by PTX3-sensitive virus strains. Therapeutic treatment of mice with human PTX3 promoted survival and reduced viral load in the lungs following infection with PTX3-sensitive, but not PTX3-resistant, influenza viruses.

PMID 19968561: Bottazzi et al. (2010) (Review) - PTX3 binds to human and murine cytomegalovirus and influenza virus type A (IVA). The interaction between PTX3 and IVA occurs through binding of sialylated ligands on PTX3 to the viral hemagglutinin and results in neutralization of virus infectivity in vitro. Consistently, desialylated PTX3 does not bind IVA and does not neutralize virus infectivity.
COVID-19 research v0.341 PTX3 Alison Coffey reviewed gene: PTX3: Rating: AMBER; Mode of pathogenicity: ; Publications: 31031772, 18292565, 25695775, 18292565, 19968561; Phenotypes: ; Mode of inheritance:
COVID-19 research v0.336 PTX3 Rebecca Foulger commented on gene: PTX3
COVID-19 research v0.333 PTX3 Rebecca Foulger gene: PTX3 was added
gene: PTX3 was added to COVID-19 research. Sources: Expert list,OMIM,Expert Review Amber
Mode of inheritance for gene: PTX3 was set to Unknown