Activity

Filter

Cancel
Date Panel Item Activity
23 actions
Intellectual disability - microarray and sequencing v3.1559 AFG3L2 Arina Puzriakova Phenotypes for gene: AFG3L2 were changed from Spastic ataxia 5, autosomal recessive OMIM:614487; spastic ataxia 5 MONDO:0013776; Spinocerebellar ataxia 28 OMIM:610246; spinocerebellar ataxia type 28 MONDO:0012450 to Optic atrophy 12, OMIM:618977; Spinocerebellar ataxia 28, OMIM:610246; Spastic ataxia 5, autosomal recessive, OMIM:614487
Intellectual disability - microarray and sequencing v3.1519 AFG3L2 Sarah Leigh commented on gene: AFG3L2: The mode of inheritance of this gene has been updated following NHS Genomic Medicine Service approval.
Intellectual disability - microarray and sequencing v3.1519 AFG3L2 Ivone Leong Source NHS GMS was added to AFG3L2.
Intellectual disability - microarray and sequencing v3.1514 AFG3L2 Arina Puzriakova Mode of inheritance for gene: AFG3L2 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v3.1513 AFG3L2 Arina Puzriakova Tag for-review was removed from gene: AFG3L2.
Tag Q2_21_MOI was removed from gene: AFG3L2.
Intellectual disability - microarray and sequencing v3.1510 AFG3L2 Sarah Leigh commented on gene: AFG3L2: The rating of this gene has been updated following NHS Genomic Medicine Service approval.
Intellectual disability - microarray and sequencing v3.1509 AFG3L2 Arina Puzriakova Source Expert Review Red was added to AFG3L2.
Rating Changed from Green List (high evidence) to Red List (low evidence)
Intellectual disability - microarray and sequencing v3.1084 AFG3L2 Sarah Leigh commented on gene: AFG3L2: Disease causing variants are both monoallelic and biallelic
Intellectual disability - microarray and sequencing v3.1084 AFG3L2 Sarah Leigh Phenotypes for gene: AFG3L2 were changed from Spastic ataxia 5, autosomal recessive, 614487 to Spastic ataxia 5, autosomal recessive OMIM:614487; spastic ataxia 5 MONDO:0013776; Spinocerebellar ataxia 28 OMIM:610246; spinocerebellar ataxia type 28 MONDO:0012450
Intellectual disability - microarray and sequencing v3.1083 AFG3L2 Sarah Leigh Tag Q2_21_MOI tag was added to gene: AFG3L2.
Intellectual disability - microarray and sequencing v3.1083 AFG3L2 Sarah Leigh reviewed gene: AFG3L2: Rating: ; Mode of pathogenicity: None; Publications: ; Phenotypes: Spastic ataxia 5, autosomal recessive OMIM:614487, spastic ataxia 5 MONDO:0013776, Spinocerebellar ataxia 28 OMIM:610246, spinocerebellar ataxia type 28 MONDO:0012450; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v3.325 AFG3L2 Arina Puzriakova Phenotypes for gene: AFG3L2 were changed from SPINOCEREBELLAR ATAXIA 28 to Spastic ataxia 5, autosomal recessive, 614487
Intellectual disability - microarray and sequencing v3.324 AFG3L2 Arina Puzriakova Classified gene: AFG3L2 as Green List (high evidence)
Intellectual disability - microarray and sequencing v3.324 AFG3L2 Arina Puzriakova Added comment: Comment on list classification: This gene should be downgraded from Green to Red at the next major review, in accordance with the review by Zornitza Stark.
Intellectual disability - microarray and sequencing v3.324 AFG3L2 Arina Puzriakova Gene: afg3l2 has been classified as Green List (High Evidence).
Intellectual disability - microarray and sequencing v3.323 AFG3L2 Arina Puzriakova Publications for gene: AFG3L2 were set to 22022284
Intellectual disability - microarray and sequencing v3.322 AFG3L2 Arina Puzriakova Tag for-review tag was added to gene: AFG3L2.
Intellectual disability - microarray and sequencing v3.0 AFG3L2 Zornitza Stark reviewed gene: AFG3L2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Spastic ataxia 5, autosomal recessive, MIM#614487; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v3.0 MTHFS Konstantinos Varvagiannis changed review comment from: Biallelic pathogenic MTHFS variants cause Neurodevelopmental disorder with microcephaly, epilepsy, and hypomyelination (# 618367).

The gene encodes 5,10-Methenyltetrahydrofolate synthetase which catalyzes conversion of 5-formyltetrahydrofolate (5-FTHF or folinic acid) to 5,10-methenyltetrahydrofolate (5,10-MTHF).

At least 3 unrelated individuals have been reported. The phenotype appears to be relevant to both epilepsy and ID gene panels and the role of variants/the gene supported by enzymatic activity studies, 5-FTHF accumulation, 5,10-MTHF levels (low/low-normal), the role of folate metabolism pathway overall and some supporting (metabolic) evidence from the mouse model.
---
Rodan et al (2018 - PMID: 30031689) reported on 2 individuals both presenting with microcephaly, severe global DD, epilepsy, progressive spasticity and cerebral hypomyelination upon MRI imaging. Short stature was also feature in both.

The 1st patient was an 8-year-old male who following exome sequencing was found to harbor 2 missense variants each inherited from a carrier parent. (NM_006441.3:c.434G>A / p.R145Q and c.107T>C / p.L36P). A further AFG3L2 indel was not felt to fit with his phenotype (and the onset of the related disorder appears to occur later).

Previous investigations included extensive metabolic testing, CMA, Angelman syndrome methylation analysis, GFAP, POLG1, TYMP sequencing, mitochondrial genome analysis and an XL-ID gene panel (further suggesting relevance of this gene to the current panel) were all non-diagnostic.

CSF 5-MTHF levels were initially on the low-normal range, subsequently found to be decreased (upon folinic acid supplementation) and later normalized upon use of another regimen.

MTHFS activity was measured in control fibroblasts as well as fibroblasts from this individual, with the latter demonstrating no enzyme activity. Accumulation (30x elevation) of 5-FTHF (the substrate of MTHFS) was demonstrated in patient fibroblasts.

The 2nd patient was a 11-year-old male with similar features incl. global DD (standing/walking/single words at/after 4 years of age, limited vocabulary and articulation upon last examination).

Extensive metabolic work-up as well as genetic testing for an epilepsy panel, vanishing white matter disease gene panel, mitochondrial genome as well as specific gene sequencing (LAMA2, POLR3A, POLR3B) were all non-diagnostic. Trio exome revealed 2 MTHFS variants in trans configuration (c.484C>T / p.Q162X and c.434G>A / p.R145Q).
---
Romero et al (2019 - PMID: 31844630) reported on a 4-year-old female with congenital microcephaly, severe global DD (nonverbal/nonambulatory at the age of 4), spasticity, epilepsy and cerebral hypomyelination.

Extensive investigations prior to exome sequencing revealed macrocytic anemia, decreased CSF 5-MTHF and elevated neopterin, 2 CNVs of uncertain significance upon CMA with additional long ROH on chr15. Methylation studies were negative. The child was homozygous for c.220C>T / p.R74X (RefSeq is probably NM_006441.3. MTHFS lies on chr15. The parents were unrelated but came from the same town). There were no other candidate variants from the exome analysis.

Both articles discuss extensively the role of the folate metabolism pathway overall in nucleic acid synthesis, AA metabolism, neurotransmitter synthesis, methylation as well as 5-FTHF / 5,10-MTHF in particular in myelin stabilization and DNA synthesis (eg. according to Romero et al. a defect in MTHFS would impair myelin production and also lead to decreased myelin stability).
---
A book chapter cited by Rodan et al (in N. Blau et al. (eds.), Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases - DOI: 10.1007/978-3-642-40337-8_10) included limited details on a patient with 'MTHFS gene mutation'. This individual had early speech delay, seizures beginning in infancy, ID, autistic features, recurrent infections and was found to have very low CSF 5-MTHF levels. [Details in p169 and table 10.6 - p173].
---
In a mouse model reported by Field et al (2011 - PMID: 22303332), Mthfs was disrupted through insertion of a gene trap vector between the first 2 exons. Heterozygous [Mthfs(gt/+)] mice were fertile and viable. Mthfs protein levels were slightly but not statistically significantly reduced in tissues measured. No homozygous embryos were recovered following intercrosses of heterozygous mice, suggesting that Mthfs is an essential gene. Mouse embryonic fibroblasts from heterozygous mice [Mthfs (gt/+)] exhibited reduced de novo purine biosynthesis, but did not exhibit altered de novo thymidylate biosynthesis. Plasma folate levels were altered in heterozygous mice on a standard (/control) diet.
Sources: Literature; to: Biallelic pathogenic MTHFS variants cause Neurodevelopmental disorder with microcephaly, epilepsy, and hypomyelination (# 618367).

The gene encodes 5,10-Methenyltetrahydrofolate synthetase which catalyzes conversion of 5-formyltetrahydrofolate (5-FTHF or folinic acid) to 5,10-methenyltetrahydrofolate (5,10-MTHF).

At least 3 unrelated individuals have been reported. The phenotype appears to be relevant to both epilepsy and ID gene panels and the role of variants/the gene supported by enzymatic activity studies, 5-FTHF accumulation, 5,10-MTHF levels (low/low-normal), the role of folate metabolism pathway overall and some supporting (metabolic) evidence from the mouse model.
---
Rodan et al (2018 - PMID: 30031689) reported on 2 individuals both presenting with microcephaly, severe global DD, epilepsy, progressive spasticity and cerebral hypomyelination upon MRI imaging. Short stature was also feature in both.

The 1st patient was an 8-year-old male who following exome sequencing was found to harbor 2 missense variants each inherited from a carrier parent. (NM_006441.3:c.434G>A / p.R145Q and c.107T>C / p.L36P). A further AFG3L2 indel was not felt to fit with his phenotype (and the onset of the related disorder appears to occur later).

Previous investigations included extensive metabolic testing, CMA, Angelman syndrome methylation analysis, GFAP, POLG1, TYMP sequencing, mitochondrial genome analysis and an XL-ID gene panel (further suggesting relevance of this gene to the current panel) were all non-diagnostic.

CSF 5-MTHF levels were initially on the low-normal range, subsequently found to be decreased (upon folinic acid supplementation) and later normalized upon use of another regimen.

MTHFS activity was measured in control fibroblasts as well as fibroblasts from this individual, with the latter demonstrating no enzyme activity. Accumulation (30x elevation) of 5-FTHF (the substrate of MTHFS) was demonstrated in patient fibroblasts.

The 2nd patient was a 11-year-old male with similar features incl. global DD (standing/walking/single words at/after 4 years of age, limited vocabulary and articulation upon last examination).

Extensive metabolic work-up as well as genetic testing for an epilepsy panel, vanishing white matter disease gene panel, mitochondrial genome as well as specific gene sequencing (LAMA2, POLR3A, POLR3B) were all non-diagnostic. Trio exome revealed 2 MTHFS variants in trans configuration (c.484C>T / p.Q162X and c.434G>A / p.R145Q).
---
Romero et al (2019 - PMID: 31844630) reported on a 4-year-old female with congenital microcephaly, severe global DD (nonverbal/nonambulatory at the age of 4), spasticity, epilepsy and cerebral hypomyelination.

Extensive investigations prior to exome sequencing revealed macrocytic anemia, decreased CSF 5-MTHF and elevated neopterin, 2 CNVs of uncertain significance upon CMA with additional long ROH on chr15. Methylation studies were negative. The child was homozygous for c.220C>T / p.R74X (RefSeq is probably NM_006441.3. MTHFS lies on chr15. The parents were unrelated but came from the same town). There were no other candidate variants from the exome analysis.

Both articles discuss extensively the role of the folate metabolism pathway overall in nucleic acid synthesis, AA metabolism, neurotransmitter synthesis, methylation as well as 5-FTHF / 5,10-MTHF in particular in myelin stabilization and DNA synthesis (eg. according to Romero et al. a defect in MTHFS would impair myelin production and also lead to decreased myelin stability).
---
A book chapter cited by Rodan et al (in N. Blau et al. (eds.), Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases - DOI: 10.1007/978-3-642-40337-8_10) included limited details on a patient with 'MTHFS gene mutation'. This individual had early speech delay, seizures beginning in infancy, ID, autistic features, recurrent infections and was found to have very low CSF 5-MTHF levels. [Details in p169 and table 10.6 - p173].
---
In a mouse model reported by Field et al (2011 - PMID: 22303332), Mthfs was disrupted through insertion of a gene trap vector between the first 2 exons. Heterozygous [Mthfs(gt/+)] mice were fertile and viable. Mthfs protein levels were slightly but not statistically significantly reduced in tissues measured. No homozygous embryos were recovered following intercrosses of heterozygous mice, suggesting that Mthfs is an essential gene. Mouse embryonic fibroblasts from heterozygous mice [Mthfs (gt/+)] exhibited reduced de novo purine biosynthesis, but did not exhibit altered de novo thymidylate biosynthesis. Plasma folate levels were altered in heterozygous mice on a standard (/control) diet.

[Please consider inclusion in other possibly relevant panels e.g. for metabolic disorders]
Sources: Literature
Intellectual disability - microarray and sequencing v3.0 MTHFS Konstantinos Varvagiannis gene: MTHFS was added
gene: MTHFS was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: MTHFS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MTHFS were set to 30031689; 31844630; 22303332; https://doi.org/10.1007/978-3-642-40337-8_10
Phenotypes for gene: MTHFS were set to Neurodevelopmental disorder with microcephaly, epilepsy, and hypomyelination, 618367
Penetrance for gene: MTHFS were set to Complete
Review for gene: MTHFS was set to GREEN
Added comment: Biallelic pathogenic MTHFS variants cause Neurodevelopmental disorder with microcephaly, epilepsy, and hypomyelination (# 618367).

The gene encodes 5,10-Methenyltetrahydrofolate synthetase which catalyzes conversion of 5-formyltetrahydrofolate (5-FTHF or folinic acid) to 5,10-methenyltetrahydrofolate (5,10-MTHF).

At least 3 unrelated individuals have been reported. The phenotype appears to be relevant to both epilepsy and ID gene panels and the role of variants/the gene supported by enzymatic activity studies, 5-FTHF accumulation, 5,10-MTHF levels (low/low-normal), the role of folate metabolism pathway overall and some supporting (metabolic) evidence from the mouse model.
---
Rodan et al (2018 - PMID: 30031689) reported on 2 individuals both presenting with microcephaly, severe global DD, epilepsy, progressive spasticity and cerebral hypomyelination upon MRI imaging. Short stature was also feature in both.

The 1st patient was an 8-year-old male who following exome sequencing was found to harbor 2 missense variants each inherited from a carrier parent. (NM_006441.3:c.434G>A / p.R145Q and c.107T>C / p.L36P). A further AFG3L2 indel was not felt to fit with his phenotype (and the onset of the related disorder appears to occur later).

Previous investigations included extensive metabolic testing, CMA, Angelman syndrome methylation analysis, GFAP, POLG1, TYMP sequencing, mitochondrial genome analysis and an XL-ID gene panel (further suggesting relevance of this gene to the current panel) were all non-diagnostic.

CSF 5-MTHF levels were initially on the low-normal range, subsequently found to be decreased (upon folinic acid supplementation) and later normalized upon use of another regimen.

MTHFS activity was measured in control fibroblasts as well as fibroblasts from this individual, with the latter demonstrating no enzyme activity. Accumulation (30x elevation) of 5-FTHF (the substrate of MTHFS) was demonstrated in patient fibroblasts.

The 2nd patient was a 11-year-old male with similar features incl. global DD (standing/walking/single words at/after 4 years of age, limited vocabulary and articulation upon last examination).

Extensive metabolic work-up as well as genetic testing for an epilepsy panel, vanishing white matter disease gene panel, mitochondrial genome as well as specific gene sequencing (LAMA2, POLR3A, POLR3B) were all non-diagnostic. Trio exome revealed 2 MTHFS variants in trans configuration (c.484C>T / p.Q162X and c.434G>A / p.R145Q).
---
Romero et al (2019 - PMID: 31844630) reported on a 4-year-old female with congenital microcephaly, severe global DD (nonverbal/nonambulatory at the age of 4), spasticity, epilepsy and cerebral hypomyelination.

Extensive investigations prior to exome sequencing revealed macrocytic anemia, decreased CSF 5-MTHF and elevated neopterin, 2 CNVs of uncertain significance upon CMA with additional long ROH on chr15. Methylation studies were negative. The child was homozygous for c.220C>T / p.R74X (RefSeq is probably NM_006441.3. MTHFS lies on chr15. The parents were unrelated but came from the same town). There were no other candidate variants from the exome analysis.

Both articles discuss extensively the role of the folate metabolism pathway overall in nucleic acid synthesis, AA metabolism, neurotransmitter synthesis, methylation as well as 5-FTHF / 5,10-MTHF in particular in myelin stabilization and DNA synthesis (eg. according to Romero et al. a defect in MTHFS would impair myelin production and also lead to decreased myelin stability).
---
A book chapter cited by Rodan et al (in N. Blau et al. (eds.), Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases - DOI: 10.1007/978-3-642-40337-8_10) included limited details on a patient with 'MTHFS gene mutation'. This individual had early speech delay, seizures beginning in infancy, ID, autistic features, recurrent infections and was found to have very low CSF 5-MTHF levels. [Details in p169 and table 10.6 - p173].
---
In a mouse model reported by Field et al (2011 - PMID: 22303332), Mthfs was disrupted through insertion of a gene trap vector between the first 2 exons. Heterozygous [Mthfs(gt/+)] mice were fertile and viable. Mthfs protein levels were slightly but not statistically significantly reduced in tissues measured. No homozygous embryos were recovered following intercrosses of heterozygous mice, suggesting that Mthfs is an essential gene. Mouse embryonic fibroblasts from heterozygous mice [Mthfs (gt/+)] exhibited reduced de novo purine biosynthesis, but did not exhibit altered de novo thymidylate biosynthesis. Plasma folate levels were altered in heterozygous mice on a standard (/control) diet.
Sources: Literature
Intellectual disability - microarray and sequencing AFG3L2 BRIDGE consortium edited their review of AFG3L2
Intellectual disability - microarray and sequencing AFG3L2 BRIDGE consortium edited their review of AFG3L2
Intellectual disability - microarray and sequencing AFG3L2 BRIDGE consortium reviewed AFG3L2