Activity

Filter

Cancel
Date Panel Item Activity
10 actions
Intellectual disability - microarray and sequencing v5.255 PABPC1 Sarah Leigh edited their review of gene: PABPC1: Added comment: PABPC1 variants have not been associated with a phenotype in OMIM, Gen2Phen or MONDO. PMID: 35511136 reports four de novo PABPC1 variants in four unrelated cases with a phenotype of global DD, movement coordination disorders,
seizures, behavioral disorders and mild facial dysmorphisms. Intellectual disability ranged in the cases from profound (1/4), IQ: 61 (1/4) and IQ: 79 (2/4). Seizures were apparent in the all of the three cases where it was assessed.
Molecular modeling of the variants suggested that they would result in a reduced binding affinity to the messenger RNA metabolism-related protein - PAIP2. This predicted effect was seen in coimmunoprecipitation assays between variant PABPC1 and PAIP2 (PMID: 35511136). Further functional studies in PMID: 35511136, showed that the proliferation of neural progenitor cells in Pabpc1 knockdown mouse embryo brains were decreased, this effect was rescued by the wild-type Pabpc1, but not by the variants c.1691A>G (p.Glu564Gly) or c.1709T>C (p.Ile570Thr).
Other variants were identified in 3/4 cases in PMID: 35511136, two of these had a ACMG VUS classification (RBBP4: c.845A>G, p.(Asn282Ser), IGF2R: c.1850G>A p.Cys617Tyr), while the third variant was monoallelic, whereas bialleic variants in this gene are associated with disease (KDM5B: c.2265dupA, p.(Tyr755*))(PMID: 35511136, table 1).; Changed rating: GREEN
Intellectual disability - microarray and sequencing v3.1562 PABPC1 Konstantinos Varvagiannis gene: PABPC1 was added
gene: PABPC1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PABPC1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PABPC1 were set to 35511136
Phenotypes for gene: PABPC1 were set to Global developmental delay; Expressive language delay; Intellectual disability; Behavioral abnormality; Seizures
Penetrance for gene: PABPC1 were set to unknown
Review for gene: PABPC1 was set to AMBER
Added comment: Wegler et al (2022 - PMID: 35511136) describe the phenotype of 4 individuals with de novo variants in the PABP domain of PABPC1.

Overlapping features included DD (4/4) with weak expressive language (4/4), learning disability/borderline intellectual functioning (in 2) to more severe ID (in 2 others), treatable/self-limiting seizures (in 3 for whom this information was available) as well as variable behavioral issues (impaired social skills, concentration/sleeping problems, ADHD, anxiety or autism). Other features involved feeding difficulties (3/4), hearing impairment (in 2/3) or variable other phenotypes. Contribution of de novo variants found in other genes was thought possible.

All 4 were investigated by trio exome sequencing following negative previous routine diagnostic work-up. WES revealed heterozygous de novo PABPC1 variants, 3 of which were missense SNVs (c.1687G>A/p.Gly563Ser, c.1691A>C/p.Glu564Gly, c.1709T>C/p.Ile570Thr using NM_002568.3) and a fourth an in-frame deletion (c.1664_1666del/p.Pro555del).

Additional de novo variants were reported in 3 cases (IGF2R missense SNV, htz KDM5B stopgain, RBBP4 - the latter not associated with any phenotype to date).

PABPC1 encodes Polyadenylate-binding protein, cytoplasmic, 1 which as the authors summarize has an important role overall in regulation of gene expression (poly(A) tail length, mRNA formation, export of processed mRNAs to cytoplasm, translation initiation promotion and termination, mRNA stability, NMD). Translation is regulated by Polyadenylate-binding protein–interacting proteins (PAIPs) which control PABP activity. PAIP2 in particular, which is highly expressed in CNS, is known to inhibit translation via binding to the PABP domain of PABPC1 and is thought to play an important role through transcriptional regulation for synaptic plasticity and memory.

To evaluate plausibility as a DD gene the authors performed analyses using publicly available data, with PABPC1 ranking high in terms of protein-protein interaction (PPI) and co-expression with known DD genes.

Variants were absent from gnomAD with in silico predictions in favour of a deleterious effect.

While PABPC1 is intolerant to both missense and LoF variants (z-score 4.49, pLI of 1), occurrence of these 4 dn variants and their clustering in the PABP domain appeared to be of statistical significance (p=0.002 and p=2.8x10-8) rather than being explained by random occurrence.

Structural modeling of variants suggested that all were in close spatial vicinity within the PABP domain, likely influencing PAIP2 binding.

In HeLa cells the variants were shown not to affect subcellular localization (to the cytoplasm) compared to wt. In addition, there were no significant differences upon stress conditions under which the protein localizes to stress granules.

In HeLa cells, co-immunoprecipitation assays using C-terminal HA tagged PABPC1, revealed that 3 variants (Gly563Ser, Glu564Gly, Ile570Thr) significantly reduced physical PABPC1-PAIP2 interaction compared with wt, which was also observed though to a not significant extent for Pro555del. (Other variants from literature also studied as discussed below).

Pabpc1 is highly expressed in all regions of the developing mouse brain with remarkable decrease after birth, suggesting a critical role in prenatal brain development. Through electroporation with Pabpc1-directed shRNA the authors provided evidence that Pabpc1 LoF results in abnormal neural progenitor cell proliferation with rescue experiments using human WT or missense variants (Gly563Ser, Glu564Gly, Ile570Thr) showing that only the WT could rescue the proliferation phenotype.

Overall a model whereby weakened PABPC1-PAIP2 interaction, leading to dysregulation to gene expression homeostasis and interference with proliferation of neural progenitors and the later to the NDD phenotype is proposed.

Given previous reports in the literature for de novo PABPC1 variants, namely Lys138Glu, Asp204Val, Arg481His, Pro456Leu the authors noted that the phenotypes reported in the respective individuals were rather explained by other variants (16p11.2 dup, ARID1A dn, TBL1XR1 dn variants). These PABPC1 variants do not lie in the PABP domain, have lower in silico pathogenicity scores (MPC/CADD), with structural modelling suggestive of no significant effect. Importantly, upon co-immunoprecipitation studies with PAIP2 which were here performed, these variants had no effect. Pathogenicity of these variants - not located within the PABP domain - through another mechanism cannot be however ruled out. (PMIDs cited, though not reviewed based on this discussion: De Rubeis et al, 2014 - PMID: 25363760, Guo et al, 2019 - PMID: 30504930, Kaplanis et al, 2020 - PMID: 33057194).

Currently there is no PABPC1-related phenotype in other databases (incl. OMIM, G2P, SysID, PanelApp Australia).

Consider inclusion in the gene panels for ID and epilepsy with amber / green rating (DD with or without ID in >= 3 individuals/families/variants – also the case for seizures, role of the gene, statistical evidence for the gene/occurrence and clustering of variants, functional studies with strong evidence for at least 3 variants || learning difficulties/borderline intellectual functioning in 2 affected individuals, phenotype in few might be "blended" due to additional de novo variants).
Sources: Literature
Intellectual disability - microarray and sequencing v3.421 IGF2 Arina Puzriakova Source Expert Review Red was added to IGF2.
Rating Changed from Amber List (moderate evidence) to Red List (low evidence)
Intellectual disability - microarray and sequencing v3.252 IGF2 Arina Puzriakova commented on gene: IGF2
Intellectual disability - microarray and sequencing v3.0 IGF2 Zornitza Stark reviewed gene: IGF2: Rating: RED; Mode of pathogenicity: None; Publications: 31544945, 26154720; Phenotypes: Growth restriction, severe, with distinctive facies, MIM#616489; Mode of inheritance: None
Intellectual disability - microarray and sequencing IGF2 BRIDGE consortium edited their review of IGF2
Intellectual disability - microarray and sequencing IGF2 BRIDGE consortium edited their review of IGF2
Intellectual disability - microarray and sequencing IGF2 Louise Daugherty classified IGF2 as amber
Intellectual disability - microarray and sequencing IGF2 Louise Daugherty commented on IGF2
Intellectual disability - microarray and sequencing IGF2 BRIDGE consortium reviewed IGF2