Activity

Filter

Cancel
Date Panel Item Activity
12 actions
Intellectual disability - microarray and sequencing v3.1201 ATP9A Konstantinos Varvagiannis gene: ATP9A was added
gene: ATP9A was added to Intellectual disability. Sources: Literature,Other
Mode of inheritance for gene: ATP9A was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: ATP9A were set to Global developmental delay; Intellectual disability; Postnatal microcephaly; Failure to thrive; Abnormality of the abdomen
Penetrance for gene: ATP9A were set to Complete
Review for gene: ATP9A was set to AMBER
Added comment: Vogt, Verheyen et al (2021 - http://dx.doi.org/10.1136/jmedgenet-2021-107843) report 3 affected individuals from 2 unrelated consanguineous families.

Features included DD, variable ID (Fam1: sib1-mild, sib2-possible, Fam2: severe), postnatal microcephaly (-2.33 to -3.58 SD), failure to thrive as well as gastrointestinal symptoms (nausea, vomiting, GE reflux).

These subjects were homozygous for pLoF ATP9A variants private to each family.

Previous investigations incl. karyotype, aCGH and transferrin electophoresis (CDGs) and were unremarkable.

Diagnosis was made by exome sequencing and homozygosity mapping. Affected sibs from the first family were homozygous for a stopgain variant [NM_006045.3:c.868C>Τ / p.(Arg290*)]. The subject from the second family was homozygous for a variant affecting the consensus (donor) splice site [c.642+1G>A - same RefSeq]. Both variants were absent from gnomAD. Sanger sequencing was used to confirm variants, carrier status of the parents and unaffected sibs in both families.

Sequencing of cDNA from the individual homozygous for the splicing variant demonstrated skipping of exon 7 with the variant likely leading to frameshift and introduction of a premature stop codon.

qPCR in dermal fibroblasts from affected individuals from both families revealed expression downregulation of ATP9A (14% and 4% respectively for the stopgain and splice variant). Study at the protein level was not possible due to absence of antibody against endogenous ATP9A.

ATP9A encodes ATPase phospholipid transporting 9A (similarly to ATP9B) belonging to the subclass 2 of the P4-ATPase family. As the authors comment, the protein is mainly expressed in the brain although the precise function or subcellular distribution of endogenous ATP9A are unknown.

A previous study showed that overexpressed ATP9A in HeLa cells localizes to early/recycling endosomes and the trans-Golgi network, being required for endocytic recycling of the transferrin receptor to the plasma membrane. ATP9A (in complex with DOP1B and MON2) functionally interacts with the SNX3-retromer. A previous ATP9A knockdown cell line suggested dysregulation of >100 genes with ARPC3 (actin-related protein 2/3 complex subunit 3) being strongly upregulated.

Overall ATP9A appears to have a role in endosome trafficking pathways as well as to inhibit secretion of exosomes at the plasma membrane likely due to alteration of the actin cytoskeleton.

In line with the role of APT9A in early/recycling endosomes and identified interactions, the authors demonstrated overexpression of ARPC3 and SNX3. Study of genes encoding other known interacting proteins was not possible due to poor expression in fibroblasts.

As the authors note, mutations in genes encoding proteins of the Golgi and endosomal trafficking are important for brain development and have been associated with postnatal microcephaly.

In OMIM, G2P, SysID there is no associated phenotype.

The gene is included in the ID panel of PanelApp AUS with amber rating.
Sources: Literature, Other
Intellectual disability - microarray and sequencing v3.421 EOGT Arina Puzriakova Source Expert Review Red was added to EOGT.
Rating Changed from Amber List (moderate evidence) to Red List (low evidence)
Intellectual disability - microarray and sequencing v3.251 EOGT Arina Puzriakova commented on gene: EOGT
Intellectual disability - microarray and sequencing v3.0 EOGT Zornitza Stark reviewed gene: EOGT: Rating: RED; Mode of pathogenicity: None; Publications: 31368252; Phenotypes: Adams-Oliver syndrome 4, MIM#615297; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v2.597 PLEKHG2 Konstantinos Varvagiannis gene: PLEKHG2 was added
gene: PLEKHG2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PLEKHG2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PLEKHG2 were set to 26539891; 26573021; 24001768
Phenotypes for gene: PLEKHG2 were set to Leukodystrophy and acquired microcephaly with or without dystonia, 616763
Penetrance for gene: PLEKHG2 were set to unknown
Review for gene: PLEKHG2 was set to AMBER
gene: PLEKHG2 was marked as current diagnostic
Added comment: Karaca et al. (2015 - PMID: 26539891) in a study of 128 - mostly consanguineous - families with neurogenetic disorders and brain malformations, identified an individual homozygous for a PLEKHG2 missense variant (NM_022835.2:c.1708G>A or p.Gly570Arg). This individual (BAB4830) had a similarly affected sib. Features included hypotonia, intellectual disability, microcephaly, cerebellar atrophy and nystagmus (description provided in supplement - Table S1). This variant has been submitted in ClinVar as likely pathogenic by the corresponding laboratory (SCV000537940.1).
-------
Edvardson et al. (2016 - PMID: 26573021) reported on 5 individuals from 2 unrelated consanguineous Palestinian families, harboring a missense variant in the homozygous state (NM_022835.2:c.610C>T or p.Arg204Trp - 1/5 was unavailable for testing).
Unaffected relatives here either heterozygous for this variant or homozygous for the reference allele.

Common features included hypotonia (5/5), DD/ID (5/5), postnatal microcephaly (5/5), dystonia (3/5), nystagmus (2/5) or seizures (1/5) [many of these similar to those reported by Karaca et al]. Brain MRI images were consistent with leukodystrophy and prolonged relaxation of dorsal tegmental tracts (similar findings were not commented by Karaca et al).

PLEKHG2 encodes a Rho guanine exchange factor (RhoGEF). RhoGEFs activate RhoGTPases through release of GDP and binding of GTP. Mutations in other RhoGEFs have been associated with neurodevelopmental disorders.

PLEKHG2 activity was shown to be significantly decreased in HEK293A cells transfected with R204W-PLEKHG2 when compared to tranfection with wt. Western blotting suggested that this was not the result of defective expression.

Using lymphoblastoid cell lines from peripheral B lymphocytes from individuals homozygous for R204W and controls, similar levels of expression were shown between the 2 groups.

As the authors note, PLEKHG2 is required for Rac- and Cdc42-stimulated actin polymerization in leukocytes (PMID cited: 24001768).

SDF1a-stimulated actin polymerization was studied in patient cells and was shown to be significantly impaired. In line with this actin polymerization was also impaired upon siRNA-mediated downregulation of PLEKHG2 expression in control cells.
-------
A subsequent submission of the Gly570Arg variant in ClinVar (2017 - SCV000609979.1 - same variant as the one reported by Karaca et al) reports this as a VUS.
-------
PLEKHG2 is associated with Leukodystrophy and acquired microcephaly with or without dystonia (616763) in OMIM.
This gene is not associated with any phenotype in G2P.
PLEKHG2 is included in gene panels for ID offered by some diagnostic laboratories.
-------
As a result, this gene could be considered for inclusion in this panel probably as amber (or green if the current evidence is considered to be sufficient).
Sources: Literature
Intellectual disability - microarray and sequencing OGT Rebecca Foulger classified OGT as green
Intellectual disability - microarray and sequencing OGT Rebecca Foulger commented on OGT
Intellectual disability - microarray and sequencing OGT Rebecca Foulger commented on OGT
Intellectual disability - microarray and sequencing EOGT BRIDGE consortium edited their review of EOGT
Intellectual disability - microarray and sequencing EOGT Louise Daugherty classified EOGT as amber
Intellectual disability - microarray and sequencing EOGT Louise Daugherty commented on EOGT
Intellectual disability - microarray and sequencing EOGT BRIDGE consortium reviewed EOGT