Activity

Filter

Cancel
Date Panel Item Activity
16 actions
Intellectual disability - microarray and sequencing v3.1562 CTR9 Konstantinos Varvagiannis gene: CTR9 was added
gene: CTR9 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: CTR9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CTR9 were set to 35499524; 2815719; 25363760; 27479843; 25099282; 29292210
Phenotypes for gene: CTR9 were set to Delayed speech and language development; Motor delay; Intellectual disability; Behavioral abnormality; Autistic behavior; Failure to thrive; Feeding difficulties; Abnormality of the cardiovascular system
Penetrance for gene: CTR9 were set to unknown
Mode of pathogenicity for gene: CTR9 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: CTR9 was set to AMBER
Added comment: Meuwissen, Verstraeten, Ranza et al (2022 - PMID: 35499524) describe the phenotype of 13 unrelated individuals harboring heterozygous - predominantly de novo - CTR9 missense variants.

Overlapping features included delayed speech and/or motor development (each in 9 cases) with the latter complicated by hypotonia or hyperlaxity in some cases. Balance or coordination problems were also reported in some. Variable degrees of ID ranging from mild to severe were observed in all individuals of relevant age except for 3 who however experienced impairment in other domains and/or learning difficulties (8/11 - 2 individuals were too young for evaluation). Few had evidence of regression. Other features included behavioral abnormalities (incl. ASD in 4), FTT/feeding problems (in 5), cardiovascular findings (in 4 - incl. infantile thoracic aortic aneurysm, VSD, pulm. valve stenosis, SVAS). The authors reported variable/nonspecific dysmorphic features.

WES revealed heterozygous CTR9 missense variants in all cases (NM_014633.5 as RefSeq). The variants occurred de novo in most (11/13) individuals with a one proband having inherited the variant from his affected parent. For one case, a single parental sample was available. Most SNVs were absent from gnomAD with the exception of c.1364A>G/p.Asn455Ser and c.2633G>A/p.Arg878Gln present once in the database (Z-score for CTR9: 4.3 / pLI : 1). The variants affected highly conserved residues with in silico predictions mostly in favor of a deleterious effect.

CTR9 encodes a subunit of the PAF1 complex (PAF1C) with the other subunits encoded by PAF1, LEO1, CDC73, RTF1 and WDR61/SKI8. The complex acts as a transcriptional regulator with CTR9 binding RNA polymerase II. The complex influences gene expression by promoting H2BK123 ubiquitylation, H3K4 and H3K36 methylation. In yeast, Paf1 and Ctr9 appear to mediate involvement of Paf1C in induction of mitophagy (several Refs provided).

In silico modeling: a group of N-terminal variants likely destabilize structure, another group possibly perturbs CTR9-PAF1 interactions and a 3rd class influences interactions with other subunits. p.Glu15Lys did not appear to influence protein stability.

Functional studies: H3K4/H3K36 methylation analysis, mitochondrial quality assessment and RNA-seq studies in fibroblasts did not provide conclusive evidence for downstream consequences of the variants (albeit a brain-specific effect - as demonstrated for other disorders – cannot be excluded).

Animal models: In zebrafish, the Paf1C complex has been shown to play a role in cardiac specification and heart morphogenesis with ctr9 mutants showing severe defects in morphogenesis of primitive heart tube (cited PMID: 21338598). This supports a role of the CTR9 variants in the cardiac abnormalities observed in 4 individuals. Although Paf1C zebrafish homologues are required for Notch-regulated transcription (cited PMID: 17721442), there was no supporting evidence from RNA-seq analyses performed by the authors. In Drosophila, Ctr9 has a key role at multiple stages of nervous system development in Drosophila (cited PMID: 27520958). In rat, Ctr9 is expressed in dopaminergic neurons, with its expression not restricted to the nucleus, regulating dopamine transporter activity (cited PMID: 26048990).

As commented, de novo CTR9 variants have been identified in indivdiduals with developmental disorders in larger cohorts, though without phenotypic details (DDD study - PMID:2815719, De Rubeis et al, 2014 - PMID: 25363760, Lelieveld et al PMID: 27479843) [ https://denovo-db.gs.washington.edu/denovo-db/QueryVariantServlet?searchBy=Gene&target=CTR9 ]

Two previous studies (Hanks et al, 2014 - PMID: 25099282, Martins et al 2018, PMID: 29292210) have identified individuals with pLoF variants [in almost all cases leading to skipping of ex9 e.g. NM_014633.4:c.958-9A>G or (RefSeq not provided) c.1194+2T>C, c.1194+3A>C, the single exception being c.106C>T/p.Q36*] in individuals and families with Wilms tumor after exclusion of other genetic causes. Analyses of tumor samples revealed in several of these cases either LOH (most commonly) or truncating variants as second hits. These individuals did not display neurodevelopmental phenotypes (despite detailed clinical information provided in the 2 studies). CTR9 is included in the gene panels for WT and Tumor predisposition - childhood onset with green rating. [In addition few individuals with hyperparathyroidism jaw tumor syndrome due to heterozygous variants in CDC73 - another subunit of the PAF1 complex - have been reported with WT].

Given these reports, commenting on the embryonic lethality of Ctr9 homozygous ko mice (MGI) and the observation of only missense variants in their cohort Meuwissen, Verstraeten, Ranza et al presume that a dominant-negative effect may apply for the variants they report.

Consider inclusion in the current panel with amber (variant effect/underlying mechanism unknown) or green rating (>3 individuals/families/variants, multiple reports, some supporting evidence from animal models).
Sources: Literature
Intellectual disability - microarray and sequencing v3.1556 FBXW7 Konstantinos Varvagiannis gene: FBXW7 was added
gene: FBXW7 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: FBXW7 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FBXW7 were set to 33057194; 35395208; 30885698; 26482194; 19963109; 20332316
Phenotypes for gene: FBXW7 were set to Neurodevelopmental abnormality; Global developmental delay; Intellectual disability; Macrocephaly; Microcephaly; Abnormality of brain morphology; Abnormality of the corpus callosum; Abnormality of the cerebellum; Abnormality of the cardiovascular system; Seizures; Strabismus; Abnormality of the palate
Penetrance for gene: FBXW7 were set to unknown
Review for gene: FBXW7 was set to AMBER
Added comment: While Kaplanis et al (2020 - Ref1), identified FBXW7 among 285 genes significantly associated with developmental disorders, a recent study by Stephenson et al (2022 - Ref2) describes the neurodevelopmental phenotype of 35 individuals making this gene relevant to the current panel. There are previous reports of dn/inh germline variants in individuals (likely 7) with tumor predisposition although a neurodevelopmental phenotype was not reported in most cases.

There is currently no FBXW7-related phenotype in OMIM.

The gene is included in the DD panel of G2P [associated with: FBXW7-related developmental disorder (monoallelic), confidence: definitive, citing the study by Kaplanis et al]. SysID lists FBXW7 among the candidate ID genes (same Ref.). The gene has a green rating for ID in PanelApp Australia (VCGS participating in the recent publication).

Consider inclusion with amber/green rating. Also consider inclusion in other panels that may be relevant(macro/microcephaly, seizures, CHD, corpus callosum / cerebellar abnormalities, cleft palate, WT, etc).

[1]------------
Kaplanis et al (2020 - PMID: 33057194), by combining exome data from 31,058 parent offspring trios from the DDD study, Radboudumc and GeneDx, identified 285 genes significantly associated with developmental disorders, 28 of which (incl. FBXW7) not previously robustly associated with these disorders.

[2]------------
Stephenson et al (2022 - PMID: 35395208) provide clinical information on 35 individuals harboring germline monoallelic FBXW7 variants or chromosomal deletions spanning this gene.

The phenotype corresponded to a phenotypically variable NDD characterized by hypotonia (in about 2/3), neurodevelopmental abnormality (34/35 - as discussed later), seizures (8/35), abnormal brain morphology (13/17 - in 7/17 abnormal CC, in 5/17 abn. cerebellum, etc), head circumference (macrocephaly in 10/35, microcephaly in 2/35). Additional features included abnormal palate or uvula morphology (10/35 - cleft palate in 3 from 2 families while 1 individual from a 3rd family had bifid uvula) or abnormal heart morphology (11/35), ophthalmologic features (e.g. strabismus in 5/35) or hearing impairment (2/35). There was no recognizable gestalt (deeply set eyes with upper eyelid fullness in 9/35).

As for the DD/ID this ranged from borderline to severe, characterized as mild-moderate in 27/35, severe in 3/35. One individual did not present neurodevelopmental abnormality 1/35.

FBXW7 encodes F-box and WD40 domain protein 7 which is part of the SCF E3 ligase complex (SKP1/CUL1/F-box protein) exerting a role of recognition and binding of target proteins for degradation by the ubiquitin proteasome system. In this way FBWX7 participates in regulating a network of proteins involved in cell division, growth, differentiation (as summarized by Roversi et al - Ref2).

Most individuals were investigated by trio-WES/WGS (few with singleton WES or CMA only). 28 germline FBXW7 variants were identified incl. missense (N=21), pLoF (predicted or not to undergo NMD) and 2 deletions encompassing but not limited to FBXW7.

Additional SNVs/CNVs (e.g. an inh intragenic DPP6 dup in one individual (#9) with deletion, other de novo 4q CNVs (#10), an inh 22q spanning partially an ISCA TS region, a CACNA1A and KMT2D SNV, etc) were reported in few individuals.

Most variants arose dn (N=30) with two individuals displaying mosaicism (2/30) and three individuals having inherited the variant from their affected parent. CNVs had occurred dn.

3 missense SNVs were recurrent in unrelated individuals.

All variants identified affected all FBXW7 isoforms.

As the authors comment missense variants clustered at the C-terminal half of the protein with most (16/21) occurring within the WD40 domain. [The N-terminal part commented in the literature to affect localization].

The crystal structure of FBXW7 and SKP1 complex has been determined with CYCLIN E1/DISC1 as substrates, and in silico modeling revealed that all missense variants aligned with residues required for this interaction, or adjacent ones.

All were absent from gnomAD, while missense variants from gnomAD (N=78) were not predicted have significant effect on the binding affinity.

Variant studies revealed that most missense variants (6/7 tested - Arg689Gln being the exception) are unlikely to cause protein instability or degradation in vivo.

Co-expression of these missense variants with CYCLIN E1 / E2, known FBXW7 substrates revealed that variants were less efficient at degrading the substrate with variants in the WD40 domain having greater impact (in some cases E1 / E2 - specific).

Elav-Gal4 mediated neuronal knockdown of the Drosophila ortholog archipelago (ago) using 2 RNAi-s with different efficiency was shown to affect learning or compromise neuronal function (also related to the level of knockdown).

The authors summarize results from animal models for the role of this gene in development and the nervous system.

KO mice die in utero at E10.5 manifesting abn. of hematopoietic or vascular development and heart-chamber maturation(*). Some htz knock-in for human cancer variants, display perinatal lethality, abn lung, cleft palate (30%)(*),etc. Conditional gut specific deletion results in impaired differentiation of intestinal goblet cells (*)(constipation in 16/35 in cohort). KO limited to CNS and PNS results in defective sucking and morphological brain abnormalities. Haploinsufficiency in the nervous system was associated with impaired differentiation of neural stem cells (possibly through a Notch-mediated mechanism). KO in Schwann cells of the peripheral nervous system resulted in enhanced myelination.

Excessive oligodendrocyte cells and hypermyelination (as a result of elevated Notch & mTOR signaling) are observed in homozygous mutant zebrafish or after morpholino-mediated fbxw7 knockdown.

Overall, the authors propose haploinsufficiency or loss-of-function as the underlying mechanism.

Finally, as the authors comment, FBXW7 is a tumor suppressor among the most commonly mutated genes in human cancer (3.5%). Germline variants have been previously reported in individuals with cancer (Wilms tumor, rhabdoid, etc - most summarized below). However, none of the 35 individuals in this cohort (oldest 44 y.o.) had any history of cancer.

Reports of individuals with germline variants causing (monoallelic) disruption of FBXW7 - cases without DD/ID:

[3]------------
Mahamdallie et al (2019 - PMID: 30885698) investigated with WES a cohort of 890 individuals with Wilms tumor (799 non-familial disease, 91 from WT pedigrees). In this context they identified 4 individuals having developed WT (ages: 28-76m) with FBXW7 dn or inherited LoF variants (710G>A / p.Trp237* dn - 1972C>T / p.Arg658* - inh:NA, 1017_1021del5, 670C>T - paternal / p.Arg224* inh:NA - RefSeq not provided). One additional individual with a missense variant (1753A>T / p.Ser585Cys - dn) had developed rhabdoid tumor. While the authors mentioned additional features for other subjects in their cohort, among the 5 individuals with FBXW7 variants, only one had hypotonia (ID_0592) and another (ID_7520) had two febrile convulsions.

[4]------------
Roversi et al (2015 - PMID: 26482194) described the phenotype of a 34 y.o. female with syndromic presentation (macrocephaly, nephrotic syndrome due to FSGS, Hodgkin's lymphoma, Wilms tumor, ovarian cystadenoma, breast carcinoma) harboring a 157 kb deletion of 4q31.3.

Eventual DD/ID was not reported despite detailed clinical description.

The deletion spanned almost the entire FBXW7 gene and a pseudogene (hg19 - chr4:153205202-153362047). The authors provided evidence that the del affected the maternal allele as dn event (maternal mosaicism excluded). Expression of FBXW7 in patient-derived EBV lymphoblastoid cell line revealed decreased levels of expression compared to controls. At somatic level, the authors looked for eventual 2nd hit in tumor tissue (which was not the case) while they demonstrated decreased FBXW7 expression in a WT sample compared to normal renal tissue. Previously, variants in other genes candidate for the phenotype were ruled out (Sanger & MLPA for TP53, BRCA1/2, PALB2, WT1, 11p15 MS-MLPA, std karyotype).

[5]------------
Kuiper et al (2015 - PMID: 19963109), in a 58 y.o. patient with recurrence of RCC, identified a constitutional translocation [t(3;4)(q21;q31)]. Using long-range PCR they defined the breakpoints at 3q21.3 (128379059 - hg18) between the PLXNA1 and C3orf56 genes while the chr4 breakpoint was located within the second intron of FBXW7 (pos. 153500813 - hg18). There were no additional phenotypes reported.

[6]------------
Williams et al (2010 - PMID: 20332316) reported a patient with WT harboring germline variants in WT1 and FBXW7. While the phenotype was sufficiently explained by a germline stopgain WT1 variant with a frameshift WT1 variant (as 2nd hit) confined to the tumor, the authors identified a germline in-frame FBXW7 insertion in the same individual (c.45_46insCCT / p.Thr15_Gly16insPro - RefS : NA) [if correct corresponding to: https://gnomad.broadinstitute.org/variant/4-153332910-C-CAGG - 345/281696 alleles in gnomAD].
Sources: Literature
Intellectual disability - microarray and sequencing v3.1534 ZBTB7A Konstantinos Varvagiannis gene: ZBTB7A was added
gene: ZBTB7A was added to Intellectual disability. Sources: Literature,Other
Mode of inheritance for gene: ZBTB7A was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ZBTB7A were set to 31645653; 34515416
Phenotypes for gene: ZBTB7A were set to Global developmental delay; Intellectual disability; Macrocephaly; Abnormality of the lymphatic system; Sleep apnea; Increased body weight; Autism; Persistence of hemoglobin F; Abnormal leukocyte count; Recurrent infections; Umbilical hernia
Penetrance for gene: ZBTB7A were set to unknown
Review for gene: ZBTB7A was set to AMBER
Added comment: Monoallelic pathogenic ZBTB7A variants cause Macrocephaly, neurodevelopmental delay, lymphoid hyperplasia, and persistent fetal hemoglobin (#619769).
----
Ohishi et al (2020 - PMID: 31645653) described the phenotype of a 6y5m-old male harboring a heterozygous, de novo ZBTB7A missense variant. Features included macrocephaly, mild intellectual disability (tIQ 65) and sleep apnea. Available hemoglobin levels (in the 1st month) supported high Hb and HbF levels. Other features included PDA and an umbilical hernia.

Initial investigations incl. karyotype and CMA were normal.

The ZBTB7A variant (NM_015898.3:c.1152C>G / p.Cys384Tyr) was identified following trio WES with a list of additional findings (in suppl.) not explaining the phenotype. This SNV, confirmed by Sanger sequencing, was absent from public db with several in silico predictions in favor of a deleterious effect.

ZBTB7A on 19p encodes zinc finger- and BTB domain-containing protein 7 (or Pokemon).

The authors performed a review of 19p13.3 microdeletion cases supporting a minimum region of overlap spanning PIAS4, ZBTB7A and MAP2K2 and common features of DD and ID, macrocephaly with prominent forehead, sleep apnea. The authors argue that loss of ZBTB7A explains part of - but probably not all - features of 19p13.3 microdeletions.

ZBTB7A is known to repress expression of HBG1 and HBG2 (γ-globin), with the few available HbF patient measurements in line with this role.

Based on the structure of the protein, Cys384 (along with 3 other residues) forms a coordinate bond with the Zn+2 ion, this bond predicted to be disrupted by Tyr. Further they favor a dominant negative effect given that ZBTB7A protein is known to form dimer via interaction at the BTB domain [hetero (variant+wt) and homodimers (variant+variant) having compromised function]. To support this notion, 3 previously reported somatic variants within the zinc-finger domain have been shown to exert a dominant-negative effect (PMID cited: 26455326).
----
In a collaborative study, von der Lippe et al (2022 - PMID: 34515416) identified 12 additional individuals (from 10 families) harboring monoallelic ZBTB7A missense/pLoF variants most commonly as de novo events.

The authors describe a consistent phenotype with motor (9/11) and speech delay (9/12), cognitive impairment/ID (12/12 - commonly mild, ranged from specific learning difficulties to severe ID), macrocephaly (>90%le in 11/12, >97% in 7/12), lymphoid hypertrophy of pharyngeal tissue/adenoid overgrowth (12/12), sleep apnea (9/12). Autistic features were observed in 7/12. Other phenotypes included frequent upper airway infections (10/11), weight above 97th percentile (7/11). HbF levels were elevated in 4/5 individuals with available measurements (range: 2.2% to 11.2% - ref. for subjects above 6m of age : <2% ). Other hematological issues were observed in few individuals (abn. monocyte/neutrophil counts in 3-4). Cardiovascular issues were reported in 4 (2 fam). 3 subjects had umbilical hernia. There was no common dysmorphic feature.

Various initial investigations were normal or did not appear to explain the NDD phenotype and incl. standard karyotype, CMA, targeted testing for genes/disorders previously considered (PTEN, FMR1, NSD1, BWS and PWS methylation studies, CFTR, etc). One male had a maternally inherited chrX dup not thought to explain his complex phenotype, while another had a concurrent diagnosis of thalassemia.

Individuals were investigated with singleton (or trio) WES. Of note some individuals were DDD study participants.

8 had de novo ZBTB7A variants, incl. one who harbored 2 de novo missense SNVs several residues apart. 2 sibs had inherited a fs variant from their affected parent. For the latter as well as for another subject parental samples were unavailable.

There were no other variants of interest upon exome analysis.

5 different missense, 2 nonsense and 3 fs variants were identified with pLoF all predicted to lead to NMD.

All variants were absent from gnomAD (pLI of 0.96, LOEUF 0.33 and missense Z-score of 4.04) which lists one individual with htz LoF, likely not an artifact.

Given this individual (and the familial case) the authors discuss on the mild phenotype and/or eventual reduced penetrance or underdiagnosis of the disorder.

There was no difference in severity between those with missense/truncating variants.

ZBTB7A transcription factor (or pokemon or lymphoma/leukemia-related factor) is widely expressed. It is involved in several activities being among others required to block Notch signaling which in turn drives T-cell at the expense of B-cell development. Notch pathway activation has been demonstrated in Zbtba7 ko mouse models. Finally, the authors discuss the role of notch signaling in thymus and the nervous system, as well as that ZBTB7A up/down-regulation known to repress/increase respectively HbF expression (several refs in text).
----
MGI (1335091) for Zbtb7a : "Mice homozygous for a knock-out allele die around E16.5 due to anemia and exhibit a cell autonomous defect in early B cell development". (Phenotypes from nervous system not commented on).
----
Apart from OMIM (#619769), ZBTB7A is included in the DD panel of G2P (ZBTB7A-associated developmental disorder / monoallelic_autosomal / absent gene product / confidence limited) as well as among the primary ID genes in SysID. In PanelApp Australia the gene is incl. with green rating in the ID and Macrocephaly gene panels.
----
Consider inclusion with amber or green rating (several individuals/families/variants, highly consistent phenotype, overlap with 19p microdeletions || variant effect not studied, animal models supporting contribution of the gene to the phenotype though no data on associated NDD ones).

Please also consider inclusion in other relevant panels (macrocephaly, lymphatic disorders, ASD, etc).
Sources: Literature, Other
Intellectual disability - microarray and sequencing v3.421 NOTCH2 Arina Puzriakova Source Expert Review Red was added to NOTCH2.
Rating Changed from Amber List (moderate evidence) to Red List (low evidence)
Intellectual disability - microarray and sequencing v3.253 NOTCH2 Arina Puzriakova commented on gene: NOTCH2
Intellectual disability - microarray and sequencing v3.3 NOTCH2 Zornitza Stark reviewed gene: NOTCH2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Alagille syndrome 2, MIM#610205, Hajdu-Cheney syndrome, MIM#102500; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Intellectual disability - microarray and sequencing v3.0 DLL1 Konstantinos Varvagiannis gene: DLL1 was added
gene: DLL1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DLL1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DLL1 were set to 31353024
Phenotypes for gene: DLL1 were set to Global developmental delay; Intellectual disability; Morphological abnormality of the central nervous system; Seizures; Behavioral abnormality; Autism; Scoliosis
Penetrance for gene: DLL1 were set to unknown
Review for gene: DLL1 was set to GREEN
Added comment: Heterozygous DLL1 pathogenic variants cause Neurodevelopmental disorder with nonspecific brain abnormalities and with or without seizures (# 618709).

Fischer-Zirnsak et al (2019 - PMID: 31353024) reported on 15 affected individuals from 12 unrelated families.

Most common features included DD/ID (12/14), ASD (6/14 - belonging to 6 families) or other behavioral abnormalities, seizures (6/14 - from 6 unrelated families) and various brain MRI abnromalities. As commented by OMIM (based on the same ref) "Cognitive function ranges from severely impaired to the ability to attend schools with special assistance". Among other features, scoliosis was observed in 4. The authors could not identify a distinctive facial gestalt.

Variable initial investigations (where discussed/performed - also suggesting relevance to the current panel) included CMA, FMR1, FLNA, mitochondrial DNA analysis and metabolic work-up but had not revealed an alternative cause.

The DLL1 variants were identified by WES (with the exception of a 122-kb microdeletion spanning DLL1 and FAM120B detected by CMA). Nonsense, frame-shift, splice-site variants in positions predicted to result to NMD were identified in most. One individual was found to harbor a missense variant (NM_005618.3:c.536G>T / p.Cys179Phe) and another the aforementioned microdeletion.

The variant in several individuals had occurred as a de novo event. In 2 families, it was inherited from an also affected parent (an unaffected sib was non-carrier) while in 3 families parental studies were not possible/complete.

In frame insertion of 4 residues was demonstrated for a splice site variant, from LCLs of the corresponding individual. For another individual, material was unavailable for mRNA studies. The missense variant affected a cysteine (of the DSL domain) conserved in all Notch ligands while AA changes affecting the same position of JAG1 (another Notch ligand) have been described in patients with Alagille s.

Based on the variants identified and reports of deletions spanning DLL1 in the literature, haploinsufficiency is the proposed underlying mechanism. The gene has also a pLI of 1 and %HI of 4.65.

DLL1 encodes the Delta-like canonical Notch ligand 1. Notch signaling is an established pathway for brain morphogenesis. Previous in vivo and in vitro studies have demonstrated the role of DLL1 in CNS. The gene is highly expressed in neuronal precursor cells during embryogenesis. Expression of Dll1 (and other molecules of the Notch signalling pathway) in an oscillatory/sustained pattern and cell-cell interactions important for this pathway have been demonstrated to play a role in neuronal differentiation. [Most discussed by Fischer-Zirnsak et al with several refs provided / also Gray et al., 1999 - PMID: 10079256 & OMIM].

Animal models as summarized by the authors:
[Mouse] Loss of Dll1 in mice has been shown to increase neuronal differentiation, cause CNS hyperplasia and increased number of neurons (PMIDs cited: 9109488, 12397111, 20081190). Reduced Dll1 expression was associated with scoliosis and mild vertebral defects (cited PMIDs: 19562077, 14960495, 22484060 / among others Dll1 haploinsufficiency and dominant negative models studied). Scoliosis and vertebral segmentation defects were features in 4 and 1 individual, respectively in the cohort of 15.
[Zebrafish] Homozygous mutations in dlA, the zebrafish ortholog, disrupted the Delta-Notch signaling and led to patterning defects in the hindbrain and overproduction of neurons (cited: 15366005).

Please consider inclusion in other possibly relevant panels e.g. for ASD.
Sources: Literature
Intellectual disability - microarray and sequencing v2.588 SLC35A3 Konstantinos Varvagiannis gene: SLC35A3 was added
gene: SLC35A3 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: SLC35A3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC35A3 were set to 24031089; 28328131; 28777481; 16344554
Phenotypes for gene: SLC35A3 were set to ?Arthrogryposis, mental retardation, and seizures (MIM 615553)
Penetrance for gene: SLC35A3 were set to Complete
Review for gene: SLC35A3 was set to GREEN
gene: SLC35A3 was marked as current diagnostic
Added comment: Biallelic pathogenic variants in SLC35A3 cause Arthrogryposis, mental retardation, and seizures (MIM 615553).
--------
Edvardson et al. (PMID: 24031089) report on 8 affected individuals from 3 nuclear Ashkenazi Jewish families. All harbored a nonsense [NM_012243.1:c.514C>T / p.(Gln172*)] as well as a missense variant [NM_012243.1:c.886A>G / p.(Ser296Gly)] in the compound heterozygous state. Most of the parents, who were heterozygous for the one or the other variant, were distantly related.

Common features included ASD (8/8), arthrogryposis (8/8), seizures (6/8) and intellectual disability (6/8 - variable degrees).

Upon cDNA studies, the (predicted) missense variant led to skipping of exon 8 and there was no normal size transcript (as would be expected for a variant of this type). Introduction of a premature stop codon due to this variant as well instability of the mRNA from the Gln172Ter allele was presumed to lead to absence of functional SLC35A3 protein.

Testing of 2045 Ashkenazi Jewish individuals revealed a carrier frequency of 1/205 for the missense variant in this community (with no occurrence of the nonsense variant).

SLC35A3 is a nucleotide sugar transporter that transports (uniquely) UDP-N-acetylglucosamine (UDP-GlcNAc) from the cytoplasm where it is synthesized to its site of use in the Golgi. Proper function of such transporters is essential for biosynthesis of glycoproteins, glycolipids and proteoglycans.

Although the transport of UDP-GlcNAc is mediated also by other less specific transporters, members of the SLC35 family, reduced transport was shown in patient fibroblasts compared to controls. In addition an abnormal N-glycan profile was shown in patient fibroblasts (but was not the case in serum).

Biallelic SLC35A3 mutations in cattle were previously shown to cause a Complex Vertebral Malformation (CVM) syndrome characterized by abnormal growth, vertebral and heart malformations as well as arthrogryposis (Thomsen et al. - PMID: 16344554). Arthrogryposis as well as some skeletal features observed in patients were similar to those of the animal model.
--------
Marini et al. (PMID: 28328131) report on 2 sibs compound heterozygous for a missense and a frameshift variant [NM_012243.2:c.73C>T or p.(Arg25Cys) and c.899_900delTTinsA or p.(Leu300Glnfs*6)]. Hypotonia, DD with ID, early-onset seizures and arthrogryposis were features in both. Severe scoliosis was also noted in the younger sib.
---------
Edmondson et al. (PMID: 28777481) report on a neonate (follow-up till the 21st day of life) with extensive vertebral anomalies (butterfly vertebrae, hemibertebrae, sagittal clefts, scoliosis), heart defects (PFO, PDA) and arthrogryposis. Presence of hypotonia or other neurologic features (eg. seizures) is not commented on. Conventional caryotype and SNP-array analysis were normal apart from the presence of ROH regions due to parental consanguinity. Exome sequencing revealed only a homozygous missense SNV [c.74G>T or p.(Arg25Leu) - NP_036375.1] which was supported by an abnormal N-glycan profile. As proposed for the bovine model (PMID: 16344554) and discussed in this article, similarity of the skeletal/congenital heart defects with those observed in Alagille syndrome might be due to some of the Notch functions being dependent upon N-acetylglucosamine modification.
---------
In ClinVar :

There is a further submission of p.Ser296Gly as pathogenic (SCV000699337.1 - 2016) apart from the submission by OMIM (SCV000108589.2 - 2013). The associated condition is Arthrogryposis, mental retardation, and seizures.

A frameshift variant [NM_012243.2(SLC35A3):c.680dup (p.Asp227Glufs)- SCV000826704.1 - April 2018] as well as an intragenic deletion [NC_000001.10:g.(?_100472570)_(100477109_?)del (GRCh37) - SCV000837123.1 - June 2018] have both been submitted as pathogenic, associated with Arthrogryposis, mental retardation, and seizures. (Note: due to the different submission dates, one can presume that these variants were found in different individuals).
---------
SLC35A3 is not associated with any phenotype in OMIM.
It is included in gene panels for ID offered by some diagnostic laboratories.
---------
As a result, this gene can be considered for inclusion in the ID panel probably as green (or amber)
[Consider upgrade of this gene to green in other panels (eg. CDGs, arthrogryposis, IEMs) and/or inclusion in other possibly relevant panels.]
Sources: Literature
Intellectual disability - microarray and sequencing OTC Ellen McDonagh commented on OTC
Intellectual disability - microarray and sequencing OTC BRIDGE consortium edited their review of OTC
Intellectual disability - microarray and sequencing NOTCH2 BRIDGE consortium edited their review of NOTCH2
Intellectual disability - microarray and sequencing NOTCH2 Louise Daugherty classified NOTCH2 as amber
Intellectual disability - microarray and sequencing NOTCH2 Louise Daugherty commented on NOTCH2
Intellectual disability - microarray and sequencing OTC BRIDGE consortium edited their review of OTC
Intellectual disability - microarray and sequencing NOTCH2 BRIDGE consortium reviewed NOTCH2
Intellectual disability - microarray and sequencing OTC BRIDGE consortium reviewed OTC