Activity

Filter

Cancel
Date Panel Item Activity
28 actions
Intellectual disability - microarray and sequencing v3.1684 TIAM1 Sarah Leigh edited their review of gene: TIAM1: Added comment: Associated with relevant phenotype in OMIM, but not associated with phenotype in Gen2Phen. PMID: 35240055 reports six TIAM1 variants in four unrelated cases (5 cases in total) of Neurodevelopmental disorder with language delay and seizures, OMIM:619908. All of the cases displayed seizures and intellectual disability, where an assessment was made. The drospohila ortholog (still life) and funtional studies supported this gene disease association (PMID: 35240055).; Changed rating: GREEN
Intellectual disability - microarray and sequencing v3.1606 ATP6V0A1 Mike Spiller changed review comment from: Bott et al 2021 PMID: 34909687

17 individuals from 14 unrelated families

12 individuals with de novo variants in ATP6V0A1.
Associated with severe intellectual disability and refractory seizures following initial normal development.
1 stillborn; other 11 all have intellectual disability and slowing of developmental progression. 10 have epilepsy, microcephaly also common and MRI abnormalities in some.
Dysmorphic features less common.

7/12 have recurrent hotspot variant NM_001130021.3 c.2219G>A R740Q.

Biallelic inheritance also suggested - 2 separate families (apparently unrelated by IBD analysis) with affected individuals compound heterozygous for c.445delG p.(Glu149fs) and c.1483C>T p.(Arg495Trp).
Phenotype of ID, epilepsy, but with ataxia and cerebellar anomalies.

Gene involved in proton transport into organelles. Cell lines stably expressing R740Q show reduced endolysosome acidification consistent with reduced transporter function.
Supported by data showing impaired maturation of Cathepsin D (requires acidic pH).
Also refer to studies of yeast homologue showing that R735 (corresponds to human R740) is essential for proton transport function (Kawasaki-Nishi et al 2001 PMID: 11592980).

Strong evidence that pathogenic missense variants in this gene cause severe ID/epilepsy, Less certain for biallelic inheritance.
Recommend upgrade to Green for ID and epilepsy.; to: Bott et al 2021 PMID: 34909687

17 individuals from 14 unrelated families

12 individuals with de novo variants in ATP6V0A1.
Associated with severe intellectual disability and refractory seizures following initial normal development.
1 stillborn; other 11 all have intellectual disability and slowing of developmental progression. 10 have epilepsy, microcephaly also common and MRI abnormalities in some.
Dysmorphic features less common.

7/12 have recurrent hotspot variant NM_001130021.3 c.2219G>A R740Q.

Biallelic inheritance also suggested - 2 separate families (apparently unrelated by IBD analysis) with affected individuals compound heterozygous for c.445delG p.(Glu149fs) and c.1483C>T p.(Arg495Trp).
Phenotype of ID, epilepsy, but with ataxia and cerebellar anomalies.

Gene involved in proton transport into organelles. Cell lines stably expressing R740Q show reduced endolysosome acidification consistent with reduced transporter function.
Supported by data showing impaired maturation of Cathepsin D (requires acidic pH).
Also refer to studies of yeast homologue showing that R735 (corresponds to human R740) is essential for proton transport function (Kawasaki-Nishi et al 2001 PMID: 11592980).

Strong evidence that heterozygous pathogenic missense variants in this gene cause severe ID/epilepsy, Less certain for biallelic inheritance.
Recommend upgrade to Green for ID and epilepsy.
Intellectual disability - microarray and sequencing v3.1561 DPH5 Konstantinos Varvagiannis gene: DPH5 was added
gene: DPH5 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DPH5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DPH5 were set to 35482014
Phenotypes for gene: DPH5 were set to Abnormality of prenatal development or birth; Neonatal hypotonia; Global developmental delay; Intellectual disability; Seizures; Abnormality of the cardiovascular system; Abnormality of the globe; Feeding difficulties; Short stature; Abnormality of head or neck
Penetrance for gene: DPH5 were set to unknown
Review for gene: DPH5 was set to AMBER
Added comment: Shankar et al (2022 - PMID: 35482014) present evidence for a diphthamide-deficiency syndrome due to biallelic DPH5 pathogenic variants.

As the authors summarize, DPH5 encodes a methyltransferase critical to the biosynthesis of diphthamide. Diphthamide is a post translationally modified histidine residue found in eukaryotic elongation factor 2 (eEF2). eEF2 is essential for mRNA translation and protein synthesis. The role of diphthamide is not clear, although it serves as a target for ADP-ribosylation, the latter resulting in inactivation of the eEF2 (inhibition of its translocation activity) and arrest of protein synthesis. Biosynthesis of diphthamide is complex involving multiple components (DPH1-DPH7) and the methylating co-factor S-adenosyl methionine, with 2 diphthamide-deficiency disorders due to biallelic DPH1 or DPH2 pathogenic variants and a NDD phenotype reported to date.

The authors describe a phenotypic spectrum associated with biallelic DPH5 variants ranging from a prenatally lethal presentation to profound neurodevelopmental disorder. Details are provided on 5 individuals from 3 unrelated families. While one subject died at the age of few days due to multisystem complications, the phenotype appeared to be relatively consistent with prenatal findings (decreased fetal movements in 2 from 2 families, polyhydramnios in 2 from 2 families), hypotonia, global DD and ID (4/4 from 2 families - profound in 3), seizures (3/5 from 2 families - abnormal EEG in 4/4), cardiovascular findings (5/5, MVP and regurgitation in 2 from Fam1 || aortic dilatation in 2 sibs from Fam2 || VSD, ASD and hypopl. PA, pericardial effusion in 5th), GI issues (5/5, poor feeding in 4), short stature (4/4). Ocular findings were reported in 3/4 (gray sclerae in 2, ocular melanocytosis in 2). The authors describe some common craniofacial findings incl. broad/prominent forehead (5/5), sparse eyebrows (4/5), downturned corners of mouth or triangular chin (each in 3/5).

WES/WGS revealed biallelic DPH5 variants in all affected individuals, namely: homozygosity for a missense variant in 2 sibs (NM_001077394.2:c.779A>G/p.His260Arg). Homozygosity for c.521dupA/p.Asn174LysTer10 for the individual deceased in the neonatal period (for this family there was significant history of spontaneous miscarriages/stillbirth/neonatal death). Two sibs born to non-consanguineous parents were compound htz for a stopgain and a missense SNV (c.619C>T/p.Arg207*, c.329A>G/p.Asn110Ser).

In silico modeling revealed that the pLoF variants, not predicted to lead to NMD, likely remove the domain for interaction with eEF2 while the missense ones also affected interaction with eEF2.

In recombinant MCF7 breast cancer cell line-derived DPH5-knockouts, transfected with recombinant expr. plasmids encoding wt or the 4 variants, the 2 truncating variants were shown to affect ADP-ribosylation of eEF2's diphthamide (total lack / minimal enzymatic activity for Arg207* and Asn174Lysfs respectively). Asn110Ser and His260Arg had residual activities which was thought to be explained by high expression levels compensating partial inactivation (given the multicopy plasmid-driven expression).

ADP-ribosylation assays in S. cerevisiae demonstrated loss of function for the 2 truncating variants. Although the 2 missense variants retained sufficient activity to produce diphthamide (assayed through toxin induced ADP-ribosylation of eEF2), more sensitive assays indicated that diphthamide synthesis was also partially compromised for both variants.

Generation of a knockin mouse model for His260Arg, appeared to recapitulate the human phenotypes with craniofacial, ophthalmologic, cardiac and visceral abnormalities and hmz mice being subviable. A single homozygous liveborn mouse had low birthweight, FTT, craniofacial dysmorphology, polydactyly, abnormal grooming behavior and early death. Few heterozygous embryos had craniofacial features, decreased body weight, reduced neuromuscular function without other abnormalities, either due to their inbred background or in the context of milder phenotype of heterozygosity in mice.

DPH5 is ubiquitously expressed in all human tissues. The gene has a pLI of 0 and LOEUF score of 0.77 (0.48-1.27) in gnomAD. The authors refer to unpublished data, noting that complete absence of DPH5 is incompatible with life with embryonic lethality of a Dph5(ko/ko) line.

The phenotype bears similarities to DPH1- and DPH2- related NDDs (both AR / green and amber respectively in ID panel) and appears to be more severe compared to the phenotype of de novo EEF2 variants (cited PMID: 33355653).

Please consider inclusion in the ID panel with amber (4 individuals from 2 families with ID) / green rating (rather consistent phenotype in 3 families probably representing a continuous spectrum, variant studies, mouse model, similarities with diphthamide-deficiency syndromes). Also consider amber rating in the epilepsy panel (3 individuals from 2 families reported). The gene may be also relevant in other gene panels e.g. for congenital heart disease, short stature, etc (not added).
Sources: Literature
Intellectual disability - microarray and sequencing v3.1530 MAN2C1 Konstantinos Varvagiannis gene: MAN2C1 was added
gene: MAN2C1 was added to Intellectual disability. Sources: Literature,Other
Mode of inheritance for gene: MAN2C1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAN2C1 were set to 35045343
Phenotypes for gene: MAN2C1 were set to Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Abnormality of the corpus callosum; Ventriculomegaly; Polymicrogyria; Abnormality of the face; Macrocephaly
Penetrance for gene: MAN2C1 were set to unknown
Review for gene: MAN2C1 was set to GREEN
Added comment: Biallelic pathogenic MAN2C1 variants cause Congenital disorder of deglycosylation 2 (# 619775). Mild to moderate impairment of intellectual development is a feature in most patients as in the OMIM's clinical synopsis for this disorder.
----
Specifically, Maia et al (2022 - PMID: 35045343) report the clinical features based of 6 relevant individuals (4/6 aged 4-18years and 2/6 fetuses) from 4 families. These individuals had non-specific dysmorphic features (micro/retrognathia being the most common in 5/6), different congenital anomalies, variable degrees of ID (3/4), as well as brain MRI abnormalities (PMG in 3/6 from 3 fam, ventriculomegaly in 3/6 from 2 fam, callosal anomalies in 4/6 from 3 fam, cerebellar hypoplasia 2/6 - 2 fam, vermis hypoplasia 4/6 - 3 fam etc). Macrocephaly was reported for 2/6 individuals (2 fam).

While ID was observed in 3/4 individuals of relevant age (mild in 1/4, moderate in 1/4, unk in 1/4), delayed motor and language development was reported for all (4/4).

All individuals harbored biallelic MAN2C1 variants following exome sequencing (previous investigations not reported), and Sanger sequencing was used for validation and segregation (parents/sibs).

There were no putative pathogenic variants in known disease genes.

MAN2C1 encodes mannosidase, alpha, class 2c, member 1, an enzyme playing a role in deglycosylation of free oligosaccharides (fOSs). The latter are generated and released in the cytoplasm or the ER lumen during N-glycosylation of proteins. fOSs are generated from two different pathways (ERAD and LLO) with a defect in an enzyme of the NGLY1 already described to cause a NDD due to defect of deglycosylation. In a later step oligossaccharides are trimmed by the action of ENGase to form fOS containing one GlcNAc (N-Acetylglucosamine) residue (fOSGn1) at the reducing end. Processing of these fOSs by the cytosolic α-mannosidase (MAN2C1) converts Man7-9Gn1 to Man5Gn1 subsequently transported to lysosomes for degradation.

Variants incl. 3 missense SNVs incl. c.2612G>C/p.Cys871Ser, c.2303G>A/p.Arg768Gln, c.607G>A/p.Gly203Arg, one splice variant (c.601-2A>G/p.Gly201Profs*10) and one indel (c.2733_2734del/p.His911Glnfs*67). [RefSeq NM_006715.3]

Most were present in gnomAD with low AF ranging from 0.013% to 0.11% while c.2303G>A/p.Arg768 has an AF of 0.33% with 5 homozygotes(*) in the database. Conservation and in silico predictions supported their effect.

For the variant affecting the splicing acceptor site (c.601-2A>G) studies in patient fibroblasts confirmed skipping of ex6. Fibroblasts from 2 sibs cmp htz for Arg768Gln and c.601-2A>G (Gly201Profs*10) were studied for protein levels, demonstrating 90% reduction in the amount of MAN2C1. There was no truncated protein observed upon immunoblot. Protein abundance was not affected in fibroblasts from the individual who was homozygous for Gly203Arg.

Mannosidase activities were studied upon overexpression in a HEK293 model, with Gly203Arg presenting similar activity to WT and Arg768Gln exhibiting only a tiny residual activity. Cys871Ser showed increased activity compared to WT.

Using fibroblasts from controls and the same individuals as above, the authors showed that pathogenic MAN2C1 variants caused defects in fOS processing (delayed processing of high oligomannose species, reduced production of M5Gn1 with M8 and M9Gn1/2 species remaining at high levels) supporting a total/partial loss of mannosidase activity for Arg768Gln and Gly203Arg.

In MAN2C1-KO HAP1 cell lines, M7-M9Gn1 species accumulated while M5Gn1 - the product of MAN2C1 - were absent. Complementation of KO HAP1 cells with Gly203Arg, Arg768Gln and Cys871Ser suggested impaired fOS processing for Gly203Arg and Arg768Gln (with significant amounts of M7-M9Gn1 species). Cells complemented with Cys871Ser did not exhibit fOS processing defects.

The authors speculate that Cys871Ser could affect a non-mannosidase function of the enzyme relevant to brain development or that it might lead to abnormal inter-subunit interactions or tetramer formation.

Finally, Maia et al summarize findings in previously described Man2c1-KO mice (cited PMID: 24550399). These appeared normal, did not exhibit differences in growth or lifespan and did not present behavioral alterations. Man2c1-KO mice had CNS involvement with histological analyses in favor of neuronal and glial degeneration with multiple vacuoles in deep neocortical layers and telencephalic white matter tracts. Vacuolization was not observed upon brain histology for the 2 fetuses studied which Maia et al speculate may occur at a later stage. In KO mice there was considerable accumulation of Man8–9GlcNAc oligosaccharides.
----
G2P includes MAN2C1 in it's DD panel (confidence: strong, MAN2C1-associated neurodevelopmental disorder with cerebral malformations). In PanelApp Australia, this gene is rated green in the ID, polymicrogyria, cerebellar hypoplasia and fetal anomalies gene panels.

Consider inclusion in the current panel with green (3 individuals/families/variants, role of the gene, NDD phenotype also reported for NGLY1-related disorder of deglycosylation, variant studies) or amber rating (ID not a universal feature, still DD observed in all affected individuals).

Please consider adding this gene in other relevant panels (as in PanelApp Australia, also for corpus callosum abnormalities, metabolic disorders, etc).
Sources: Literature, Other
Intellectual disability - microarray and sequencing v3.1525 CACNA2D1 Konstantinos Varvagiannis gene: CACNA2D1 was added
gene: CACNA2D1 was added to Intellectual disability. Sources: Literature,Other
Mode of inheritance for gene: CACNA2D1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACNA2D1 were set to 35293990; 28097321
Phenotypes for gene: CACNA2D1 were set to Abnormal muscle tone; Feeding difficulties; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of the corpus callosum; Cerebral atrophy; Abnormality of movement; Cortical visual impairment; Pain insensitivity
Penetrance for gene: CACNA2D1 were set to Complete
Review for gene: CACNA2D1 was set to GREEN
Added comment: Consider inclusion in the current panel with green rating.

Recent report of 2 unrelated individuals with DEE due to biallelic CACNA2D1 variants. Both referred to neurology/genetics for hypotonia/severe DD prior to onset of seizures.

One further individual with hypotonia and severe ID (seizures not discussed, age unknown).

Gene with established role, encoding α2δ-1 subunit of Cav channels. Studies for the variants support loss-of-function as the underlying effect.

Eventual contribution of monoallelic variants to NDD-phenotypes discussed (and put in question) in Ref [1] below.

There is currently no phenotype for CACNA2D1 in OMIM/G2P. In SysID this gene is listed among the candidates for ID, based on a previous report. CACNA2D1 is not currently included in the ID/epilepsy panels in PanelApp Australia.

See also relevant review in epilepsy panel (Dr. H. Lord).

Please consider also inclusion in other panels (e.g. microcephaly, corpus callosum, movement disorders, etc).

[1] ----
Dahimene et al (2022 - PMID: 35293990) describe the phenotype of 2 unrelated individuals with biallelic CACNA2D1 variants.

Overall, the phenotype corresponded to an early-onset DEE, characterized by abnormal muscle tone (axial hypotonia 2/2 with spasticity in extremities in 2/2), feeding difficulties (2/2), profound DD and ID (2/2), microcephaly (2/2 - approx. -2 SD in both), seizures (2/2 - 1st : onset 9m with absences and later generalized seizures, 2nd : onset 11m with hemi-clonic seizures and atypical absences). Other features included cortical visual impairment (2/2) and movement disorder (incl. choreiform movements 2/2, orofacial dyskinesia 2/2 and dystonic episodes 1/2). Brain MRI revealed corpus callosum anomalies (2/2) and cerebral atrophy (2/2). Both had echocardiography (abnormal in 1/2 - tiny PFO) and electrocardiography which was normal. Both exhibited insensibility to pain.

Presentation is relevant to the current panel as first symptoms in the first 3 months with severe hypotonia and poor head control (2/2) with evaluation in neurology/genetics preceding onset of seizures in both.

Trio ES was performed for both individuals and their (healthy) parents and revealed homozygosity for a fs variant in the first [NM_000722.3:c.818_822dup / p.(Ser275Asnfs*13)] and compound htz for a fs and a missense variant [c.13_23dup / p.(Leu9Alafs*5) and c.626G>A / p.(Gly209Asp)] in the second affected individual, respectively.

Eventual additional variants were not discussed.

Previous investigations are only provided for the 2nd and were all normal (karyotype, CMA, 15q methylation, epilepsy/neurometabolic gene panels).

Voltage-gated calcium channels are heteromultimers comprising different subunits incl. an alpha-1 (α1), α2δ (alpha-2/delta), beta (β) and gamma (γ). CACNA2D1 is one of the 4 genes (CACNA2D1-4) encoding the alpha-2/delta subunit. Its product is post-translationally processed into 2 peptides, an alpha-2 and a delta subunit, held by a disulfide bond.

Biallelic variants in CACNA2D2 - also encoding an alpha-2/delta subunit - cause cerebellar atrophy with seizures and variable developmental delay (# 618501).

Variant studies support loss-of-function effect for the studied variants, notably by NMD for the fs one, and severe impairment of the Cav2 channel function for the missense one :
- CACNA2D1 mRNA was reduced to 6-9% compared with control in fibroblasts from the 1st individual. mRNA levels for the 2nd subject were similar to control.
- Quantification of the protein in whole-cell lysates from fibroblasts revealed lower α2δ levels compared to control (10-12% and 31-38% applying to the 1st and 2nd individual).
- CACNA2D3 mRNA levels in fibroblasts from the 2nd patient were 2-7x higher compared to the 1st or controls suggesting a possible compensatory effect. CACNA2D2/4 mRNA levels were too low for quantification.
- Gly209 lies within the gabapentin and amino-acid binding pocket and this residue is invariable in CACNA2D1/CACNA2D2 in all vertebrates and paralogs.
- Transfection of tsA-201 cells with either WT or G209D HA-tagged α2δ revealed reduced cell surface expression for this missense variant (~80, for biotinylated form ~86%).
- In tsA-201 cells transfected with HA-tagged Cav2.2/β1b and either α2δ-1-WT, no α2δ-1 or α2δ-1-G209D, WT resulted in increased 13x currents with no increase applying to G209D (or in absence of α2δ). Plasma membrane expression of double (GFP/HA) tagged Cav2.2 was increased upon co-expression with WT α2δ-1 which was not the case for α2δ-1-G209D.
- In hippocampal neurons, double (GFP/HA)-tagged Cav2.2 could not be detected at the cell surface in the presence of α2δ-1-G209D (or no α2δ) in contrast with strong expression in presence of α2δ-1-WT. α2δ-1-G209D did not promote trafficking of Cav2.2 into hippocampal neurites, as indicated by reduced signals for both HA and GFP (for cell surface and total Cav2.2 respectively).
- Co-expression of double (GFP/HA) tagged Cav2.2 with β1b and either HA-α2δ-1-WT or HA-α2δ-1-G209D in tsA-201 cells, revealed reduced complex formation of G209D with Cav2.2 Co-immunoprecipitated HA-α2δ-1-G209D had higher molecular weight compared to HA-α2δ-1-WT which suggests that α2δ-1-G209D remains as the uncleaved immature form (probably in the ER).

Mouse model (several Refs in text):
Mild cardiac phenotype and reduced ventricular myocyte Ca current density was observed in hmz ko mice. Similarly to the insensibility to pain human phenotype, mice had delayed neuropathic pain-related responses. Overexpression of a2δ-1 resulted in epileptiform EEG and behavioral arrest, overall supporting a critical role of α2δ-1 for mouse brain.

The authors underscore that the parents of both patients (htz carriers) were healthy and review previous literature for association of monoallelic variants with epilepsy, ID and arrhythmogenic disorders (in suppl.) [Refs not here reviewed].

As for the NDD phenotype, CACNA2D1 is within a previously defined small region of overlap for 7q21.11 microdeletions associated with ID+/-epilepsy. The same study did not reveal de novo SNVs in any of the 3 contained genes within this SRO (HGF, CACNA2D1, PCLO) in 4293 patients with NDD [cited PMID: 28240412]. A frameshift variant (c.2625del) was identified in a 13-yo girl with infantile spasms and normal intelligence [cited PMID: 25877686]. A 1-bp insertion (c.659-2_659-1insT / not studied at the mRNA level) was identified in another 14-yo female with ID and epilepsy [cited PMID: 34356170]. The authors state that the phenotype (/differences) of these individuals as well as presence of pLoF CACNA2D1 variants in gnomAD [still pLI of 1] put in question pathogenicity of monoallelic variants for these phenotypes.

The role of heterozygous missense variants described in relation to arrhythmogenic disorders is also discussed extensively (some downgraded to LB/VUS, others having a relatively high MAF and presence of 1-2 homozygotes in gnomAD).

[2] ----
In an article cited by SysID for CACNA2D1 (2017 - PMID: 28097321), Reuter et al studied with WES and autozygosity mapping individuals with NDD belonging to consanguineous families.

As in eTables1/3, a male - single affected individual born to consanguineous parents from Turkey (MR150) - was investigated by singleton ES.

This individual was homozygous for a missense CACNA2D1 SNV [NM_000722.2:c.1514C>T;p.(Thr505Ile)].

Prior investigations are unavailable (although individuals with previously known P/LP CNVs were excluded).

The phenotype - briefly reported - included hypotonia, severe ID, stereotypic behaviors, inguinal hernia and omphalocele. Presence of seizures was not commented on. The age of this individual was not reported.
Sources: Literature, Other
Intellectual disability - microarray and sequencing v3.1395 DHDDS Arina Puzriakova Added comment: Comment on mode of inheritance: MOI should be updated from 'Both mono- and biallelic' to 'Monoallelic' at the next GMS panel update. Monoallelic variants are associated with a neurodevelopmental disorder comprising DD/ID, epilepsy and a variable movement disorder phenotype - >3 unrelated individuals reported in literature. To date, only one individual with biallelic variants and ID has been reported (PMID: 27343064). This patient presented with glycosylation defects but no corroborating cases have been reported since.
As only one patient has been described with biallelic inheritance and this phenotype, MOI should be set to 'Monoallelic' until evidence of additional cases emerges - biallelic variants would still be picked up by the Genomics England pipeline under this MOI.
Intellectual disability - microarray and sequencing v3.1292 AP1G1 Arina Puzriakova Added comment: Comment on list classification: New gene added by Zornitza Stark. Usmani et al., 2021 (PMID: 34102099) identified 9 families with heterozygous and 2 families with homozygous variants in this gene. All individuals (12) had GDD and ID of various severity (mild to severe), except one patient who died at 22 days. Other features include hypotonia (9/10), seizures (6/10) and spasticity (4/10). Some supportive functional data included.

There is sufficient evidence to promote this gene to Green at the next GMS panel update, with 'monoallelic' MOI. Biallelic cases would still be picked up by the Genomics England pipeline - but this may be reviewed if additional cases are discovered.
Intellectual disability - microarray and sequencing v3.1249 MAP1B Arina Puzriakova edited their review of gene: MAP1B: Added comment: MAP1B was flagged by a GLH following identification of some potential cases relating to variants in this gene and predominantly ID phenotypes within 100K data. Although these are pending confirmations (will request update once cases are validated), upon reassessment of MAP1B it was highlighted that inclusion on this panels may still be warranted to increase the likelihood of detecting cases, particularly given that DD/ID is more likely to be observed earlier in the course of disease albeit at varying severities.

For this reason, MAP1B should be promoted to Green status at the next GMS panel review (tagged Q3_21_rating); Changed rating: GREEN
Intellectual disability - microarray and sequencing v3.1056 HTT Eleanor Williams changed review comment from: PMID: 33432339 - Jung et al 2021 - further characterisation of the family previously reported in PMID: 27329733 (Rodan et al 2016) - using WGS they confirm they are the most likely cause of the LOMARS phenotype and clarify their locations as NM_002111.8(HTT): c.8157T>A (p.Phe2719Leu) and NM_002111.8(HTT)c.4469+1G>A (Note there are incorrect Clinvar entries). Functional studies show them each to be a hypomorphic mutation, resulting in severe deficiency of huntingtin in compound heterozygotes.; to: PMID: 33432339 - Jung et al 2021 - further characterisation of the family previously reported in PMID: 27329733 (Rodan et al 2016) - using WGS they confirm they are the most likely cause of the LOMARS phenotype and clarify their locations as NM_002111.8(HTT): c.8157T>A (p.Phe2719Leu) and NM_002111.8(HTT)c.4469+1G>A (Note there are incorrect Clinvar entries). Functional studies show them each to be a hypomorphic mutation, resulting in severe deficiency of huntingtin in compound heterozygotes.

Still only 2 cases reported to date (PMID: 27329733/33432339 and 26740508) with biallelic LOF variants in HTT associated with the LOMARS phenotype although this study add further weight with some functional data.
Intellectual disability - microarray and sequencing v3.1047 NCDN Arina Puzriakova Added comment: Comment on mode of inheritance: Setting MOI to 'Monoallelic' as only one biallelic case reported to date, and patients with biallelic variants would still be picked up by the Genomics England pipeline.
Intellectual disability - microarray and sequencing v3.755 VPS4A Arina Puzriakova Added comment: Comment on mode of inheritance: Setting MOI to 'Monoallelic' as only one biallelic case reported to date, and patients with biallelic variants would still be picked up by the Genomics England pipeline.
Intellectual disability - microarray and sequencing v3.740 ABCC9 Arina Puzriakova changed review comment from: Comment on list classification: Intellectual impairment as been reported in individuals with loss-of-function variants and a percentage of those with gain-of-function variants. However, this is less prominent than other features of the disease presentation (e.g. cardiac, skeletal defects) and often ID is perhaps too mild.

Therefore, ABCC9 will be flagged for review by the GMS team with regards to phenotypic fit for this panel and determine whether it should be demoted from Green to Amber (added for-review tag).; to: Comment on list classification: Intellectual impairment has been reported in individuals with loss-of-function variants and a percentage of those with gain-of-function variants. ID is typically mild, however it is plausible that patients may still be tested for this panel, particularly if recruited under Coffin-Siris-like coarse facial features which can be associated with this gene. Therefore, maintaining Green gene rating.

Comment on mode of inheritance: Leaving MOI as Monoallelic as only 2 families with the same biallelic variant (possible founder variant) reported to date (PMID:31575858), and patients with biallelic variants would still be picked up by the Genomics England pipeline.
Intellectual disability - microarray and sequencing v3.681 KCNMA1 Arina Puzriakova changed review comment from: Multiple individuals reported with either mono- or biallelic variants. Developmental delay and intellectual disability of relevant severity to this panel has been reported in a sufficient number of cases for inclusion on this panel. Although in most cases the phenotypes are primarily characterised by seizures or dyskinesia, it is plausible that these individuals may still be tested under the ID panel.

Furthermore, several individuals have been reported with severe GDD/ID and other variable feature such as craniofacial dysmorphism, ataxia, bone dysplasia, visceral malformations, and brain imaging anomalies, but without epilepsy or paroxysmal dyskinesia (namely Liang-Wang syndrome, PMID: 31152168). In less severely affected cases DD with significant speech delay has been noted as the main clinical indication of the presenting phenotypes, further indicating benefit of inclusion on a diagnostic ID panel.; to: Multiple individuals reported with either mono- or biallelic variants. Developmental delay and intellectual disability of relevant severity has been reported in a sufficient number of cases for inclusion on this panel. Although in most cases the phenotypes are primarily characterised by seizures or dyskinesia, it is plausible that these individuals may still be tested under the ID panel in context of the severe intellectual impairment that may be observed.

Furthermore, several individuals have been reported with severe GDD/ID and other variable feature such as craniofacial dysmorphism, ataxia, bone dysplasia, visceral malformations, and brain imaging anomalies, but without epilepsy or paroxysmal dyskinesia (namely Liang-Wang syndrome, PMID: 31152168). In less severely affected cases DD with significant speech delay has been noted as the main clinical indication of the presenting phenotypes, further indicating benefit of inclusion on a diagnostic ID panel.
Intellectual disability - microarray and sequencing v3.23 RNF13 Sarah Leigh changed review comment from: Associated with relevant phenotype in OMIM and as probable Gen2Phen gene. At least 2 variants reported in 3 unrelated cases, together with supportive functional studies.; to: Associated with relevant phenotype in OMIM and as probable Gen2Phen gene. At least 2 variants reported in 3 unrelated cases, together with supportive functional studies.

Gain-of-function mechanism has been reported, therefore the mutational spectrum may be limited and is still to be determined through further cases or further functional studies (view of Helen Britain, GeL Clincial Fellow).
Intellectual disability - microarray and sequencing v2.1134 OXR1 Konstantinos Varvagiannis gene: OXR1 was added
gene: OXR1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: OXR1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OXR1 were set to https://doi.org/10.1016/j.ajhg.2019.11.002
Phenotypes for gene: OXR1 were set to Central hypotonia; Global developmental delay; Delayed speech and language development; Intellectual disability; Seizures; Abnormality of the cerebellum
Penetrance for gene: OXR1 were set to Complete
Review for gene: OXR1 was set to GREEN
Added comment: Wang et al (2019 - https://doi.org/10.1016/j.ajhg.2019.11.002 ) report on 5 individuals (from 3 families) with biallelic OXR1 LoF variants.

Common features included hypotonia (4/5), severe global DD (5/5) and speech delay (5/5), ID (5/5), epilepsy (5/5) with cerebellar dysplasia/atrophy (5/5) and in some scoliosis.

All were investigated by exome sequencing and were found to harbor biallelic loss-of-function variants (2 splice-site, a stopgain and a frameshift one) either in homozygosity (2 consanguineous families) or in compound heterozygosity. In all cases parental segregation studies were compatible and in one family, an unaffected sib shown to be carrier.

Althouhgh OXR1 has been shown to affect several processes (among others DNA lesions induced by oxidative stress in E.coli, neuronal maintenance, mitochondrial morphology and DNA maintenance, etc), its mechanism of action is still not well defined. There are 6 RefSeq transcripts, the longest (NM_018002.3) encoding 3 protein domains (LysM, GRAM, TLDc). The TLDc domain is encoded by all transcripts.

Identified variants affected (probably all - fig1D) transcripts expressed in the CNS, namely NM_018002.3, NM_001198532.1, NM_181354.4. The 3 transcripts not expressed in the CNS are NM_001198533.1, NM_001198534.1 and NM_001198535.1.

Western blot with 2 different antibodies which would bind upstream of the truncation site failed to detect presence of truncated proteins in 2 affected individuals from 2 families.

The Drosophila homolog of OXR is mustard (mtd). The authors provide evidence that loss of mtd is lethal. This was however rescued by expression of an 80kb fly BAC clone covering mtd, or the fly mtd-RH isoform cDNA, or a short human OXR1 cDNA containing only the TLDc domain or a human NCOA7 cDNA. The latter is another human mtd homolog which also contains the TLDc domain. As a result the TLDc domain compensated sufficiently for loss of mtd.

Flies that survived displayed bang sensitivity and climbing defects the former assay being suggestive of susceptibility to seizures and the latter of impaired neurological/muscular function.

The authors provided evidence that mtd is broadly expressed in the fly CNS. RNAi mediated mtd knockdown specific to neurons (elav/nSyb-GAL4 expression of mtd RNAi) led to lethal eclosion defects for RNAis targeting most (18)/all(23) mtd isoforms. Lifespan was increased upon expression of human OXR1 cDNA. Neuronal loss and vacuolization was demonstrated and additional experiments in R7 photoreceptors showed presence of aberrant lysosomal structures (autolysosomes, autophagosomes and/or endolysosomes).

Aberrant lysosomal structures were also observed in fibroblasts from affected individuals (accumulation of lysosomes and/or presence of highly aberrant compartments with content typical of lysosomal dysfunction).

Overall the data presented suggest a critical role for OXR1 in lysosomal biology.

Although previous reports suggested that OXR1 is involved in oxidative stress resistance, studies performed by the authors suggested that oxidative stress is probably not the driver of the mutant fly defects.
Sources: Literature
Intellectual disability - microarray and sequencing v2.1127 FAM160B1 Ellen McDonagh Added comment: Comment on list classification: Gene added by external reviewer, and promoted from grey to Red as the function of the protein/gene is still unknown at this stage. One family and another unrelated individual reported with developmental delay/ID and variants in this gene, however this will be kept red until further evidence arises.
Intellectual disability - microarray and sequencing v2.1098 ZNF292 Konstantinos Varvagiannis gene: ZNF292 was added
gene: ZNF292 was added to Intellectual disability. Sources: Radboud University Medical Center, Nijmegen,Literature
Mode of inheritance for gene: ZNF292 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ZNF292 were set to 31723249; 29904178
Phenotypes for gene: ZNF292 were set to Intellectual disability; Autism; Attention deficit hyperactivity disorder; Abnormality of the face; Abnormal muscle tone; Abnormality of nervous system morphology; Growth abnormality; Feeding difficulties; Abnormality of the skeletal system; Abnormality of the cardiovascular system; Microcephaly; Seizures
Penetrance for gene: ZNF292 were set to Incomplete
Review for gene: ZNF292 was set to GREEN
gene: ZNF292 was marked as current diagnostic
Added comment: Mirzaa et al. (2019 - PMID: 31723249) report on 28 individuals (from 27 families) with putatively pathogenic ZNF292 variants.

Main features consisted of DD and ID (27/28 - mild in 40%, moderate in 22%, severe in 11%) with or without ASD and ADHD. A single individual had no evidence of ID but had speech delay and ASD at the age of 6. Additional features (by diminishing order of frequency) included presence of non-specific dysmorphic features (~45%), abnormal tone, brain MRI abnormalities, growth failure, feeding difficulties, skeletal and cardiac anomalies, microcephaly and epilepsy (~11%).

As the authors comment, ZNF292 encodes a zinc finger protein, acting as a transcription factor.

Evidence is provided that gene has high expression in the developing human brain, with its expression being higher in prenatal development and diminishing postnatally. Znf292 is also expressed in adult mouse brain (highest in hippocampus/Purkinje cells).

Variants were identified by exome or targeted panel sequencing (targeted capture/molecular inversion probes). Previous investigations (eg. aCGH, analysis of relevant genes) had probably ruled out alternative causes in most with few having VUS or possibly relevant additional variants (eg. a KDM5C stopgain variant in a male).

24 putatively pathogenic variants were observed in this cohort, all predicting LoF (stopgain, frameshift or splice variants). All were de novo with the exception of one family where the variant was inherited from an affected parent. Almost all were absent from gnomAD and had CADD scores > 35.

Most variants lied within the last and largest exon that encodes a DNA binding domain. RT-PCR on RNA from 2 individuals harboring such variants confirmed that NMD does not apply. This exon however represents ~88% of the total coding length so the distribution of variants in this (NMD escaping) region was consistent with what would also be expected by chance.

ZNF292 has a pLI of 1 in gnomAD. Manual review of some relevant LoF variants in gnomAD suggested that they represent false positive calls.

As a result, the effect of variants is not clear although haploinsufficiency is still possible based also on phenotype of (larger) deletions spanning this gene (cited: Engwerda et al - PMID: 29904178 / The study focuses on deletions of the broader 6q. A possible role of ZNF292 is discussed as autism was present in 4/10 individuals with deletions encompassing this gene).

Based on the aforementioned cohort with one individual being diagnosed with mild ID only as an adult and/or presence of 5 pLoF variants in gnomAD the authors propose that some variants may be incompletely penetrant or associated with only mild features.

Finally, 15 additional individuals (belonging to 12 families) harbored variants for which pathogenicity was suspected (but could not be concluded) due to insufficient phenotypic information, lack of sufficient parental studies or missense variants. In this cohort variants were mostly pLoF, while 3 individuals (incl. 2 sibs) had a de novo missense SNV.
------
Other studies were not here reviewed as some of the individuals reported were published previously in larger cohorts.
------
There is no associated phenotype in OMIM / G2P. SysID includes this gene among the candidate ID ones.
ZNF292 is included in gene panels for ID offered by some diagnostic laboratories (incl. Radboudumc and GeneDx).
------
Overall ZNF292 could be added to the ID panel probably with green (or amber) rating.

[Please consider inclusion in other possibly relevant panels eg. autism, epilepsy]
Sources: Radboud University Medical Center, Nijmegen, Literature
Intellectual disability - microarray and sequencing v2.1098 AP1B1 Konstantinos Varvagiannis gene: AP1B1 was added
gene: AP1B1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: AP1B1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AP1B1 were set to 31630788; 31630791
Phenotypes for gene: AP1B1 were set to Failure to thrive; Abnormality of the skin; Hearing abnormality; Abnormality of copper homeostasis; Global developmental delay; Intellectual disability
Penetrance for gene: AP1B1 were set to Complete
Review for gene: AP1B1 was set to AMBER
Added comment: Boyden et al. (2019 - PMID: 31630788) and Alsaif et al (2019 - PMID: 31630791) report on the phenotype related to biallelic AP1B1 mutations.

Common features included failure to thrive, ichthyosis (with variable palmoplantar keratoderma/erythroderma/abnormal hair) and hearing loss. Each study focused on different additional features eg. thrombocytopenia or photophobia in all individuals reported by Boyden et al, while Alsaif et al. focused on abnormal copper metabolism (low plasma copper and ceruloplasmin) observed in all 3 affected individuals and enteropathy/hepatopathy observed in 2 sibs.

DD was observed in all 3 individuals (2 families) reported by Alsaif et al. and patient 424 reported by Boyden et al. ID was noted in all individuals of relevant age (2 from 2 families) in the study by Alsaif. Boyden commented that ID is not part of the phenotype. The adult (424) - despite his early DD - was noted to have normal intellect and had graduated college. The other patient (1325) was last followed up at 11 months (still DD was not reported).

AP1B1 encodes one of the large subunits (β1) of the adaptor protein complex 1. Each of the AP complexes is a heterotetramer composed of two large (one of γ, α, δ, ε and β1-β4 for AP-1 to AP-4 respectively), one medium (μ1-μ4) and one small (σ1-σ4) adaptin subunit. The complex is involved in vesicle-mediated transport.

Variants were confirmed in probands and carrier parents (NM_001127.3):
Boyden Pat424 (33y) : c.430T>C (p.Cys144Arg) in trans with c.2335delC (p.Leu779Serfs*26)
Boyden Pat1325 (11m) [consanguineous Ashkenazi Jewish family] : homozygosity for c.2374G>T (p.Glu792*)
Alsaif sibs P1,P2 (4y4m, 1y5m) [consanguineous - Pakistani origin] : homozygous for a chr22 75 kb deletion spanning only the promoter and ex1-2 of AP1B1
Alsaif P3 (4y6m) [consanguineous - Saudi origin] : homozygous for a c.38-1G>A

Variant / additional studies :
22q 75-kb deletion: PCR deletion mapping and Sanger delineated the breakpoints of the 22q12.2 del to chr22:29758984-29815476 (hg?). Complete absence of transcript upon RT-PCR (mRNA from fibrolasts).
Splicing variant (c.38-1G>A): RT-PCR confirmed replacement of the normal transcript by an aberrant harboring a 1 bp deletion (r.40del).
Stopgain variant (c.2374G>T): Western blot demonstrated loss of AP1B1 (and marked reduction also for AP1G1) in cultured keratinocytes of the homozygous patient.

Loss-of-function is the effect predicted by variants. Vesicular defects were observed in keratinocytes of an affected individual (homozygous for the nonsense variant). Rescue of these vesicular defects upon transduction with wt AP1B1 lentiviral construct confirmed the LoF effect. [Boyden et al.]

ATP7A and ATP7B, two copper transporters, have been shown to depend on AP-1 for their trafficking. Similar to MEDNIK syndrome, caused by mutations in AP1S1 and having an overlapping phenotype with AP1B1 (also including hypocupremia and hypoceruloplasminemia), fibroblasts from 2 affected individuals (from different families) demonstrated abnormal ATP7A trafficking. [Alsaif et al.]

Proteomic analysis of clathrin coated vesicles (2 ind from 2 fam) demonstrated that AP1B1 was the only AP1/AP2 CCV component consistently reduced in 2 individuals (from 2 families). [Alsaif et al.]

Boyden et al. provided evidence for abnormal differentiation and proliferation in skin from an affected individual. In addition E-cadherin and β-catenin were shown to be mislocalized in keratinocytes from this affected individual.

Loss of ap1b1 in zebrafish is not lethal but lead to auditory defects (/vestibular deficits). The inner ears appear to develop normally, although there is progressive degeneration of ear epithelia. There are no behavioral/neurological phenotypes listed for mouse models. [ http://www.informatics.jax.org/marker/MGI:1096368 ].

AP1B1 is not associated with any phenotype in OMIM/G2P/SysID.

Overall this gene could be considered for inclusion in the ID panel probably with amber rating.
Sources: Literature
Intellectual disability - microarray and sequencing v2.1083 SMG9 Catherine Snow edited their review of gene: SMG9: Added comment: Maintaining Amber rating as although another individual with a variant has been identified in PMID: 31390136 there are still only full details of serve developmental delays for 2 unrelated families due to the young age of death of one reported individual in 27018474; Changed publications: 31390136
Intellectual disability - microarray and sequencing v2.1046 CPD Konstantinos Varvagiannis changed review comment from: The gene was present in the current panel with red rating, though with no reviews.

In Pubmed there are no publications concerning eventual CPD-related phenotypes. There is no associated phenotype in OMIM or G2P, either. The gene is not included in the SysID and SFARI databases. The denovo-db lists 1 individual with autism and de novo LoF variant (NM_001304.4:c.2478C>G - p.Tyr826* - Iossifov et al. - PMID: 25363768) and 2 further with congenital heart disease. Still the gene encodes an enzyme (carboxyptidase D), so AR inheritance would seem more likely (?). [The gene has also a pLI of 0 in gnomAD and Z-score of 2.59]. CPD is not included in gene panels for ID offered by diagnostic laboratories (including also the current ID panel of VCGS which was listed as a source).

As a result, red rating (or removal from the current panel) seems appropriate.; to: The gene was present in the current panel with red rating, though with no reviews.

In Pubmed there are no publications concerning eventual CPD-related phenotypes. There is no associated phenotype in OMIM or G2P, either. The gene is not included in the SysID and SFARI databases. The denovo-db lists 1 individual with autism and de novo LoF variant (NM_001304.4:c.2478C>G - p.Tyr826* - Iossifov et al. - PMID: 25363768) and 2 further with congenital heart disease. Still the gene encodes an enzyme (carboxyptidase D), so AR inheritance would seem more likely (?). [The gene has also a pLI of 0 in gnomAD and Z-score of 2.59. In Decipher %HI is 31.31]. CPD is not included in gene panels for ID offered by diagnostic laboratories (including also the current ID panel of VCGS which was listed as a source).

As a result, red rating (or removal from the current panel) seems appropriate.
Intellectual disability - microarray and sequencing v2.857 BCORL1 Rebecca Foulger Added comment: Comment on list classification: Updated rating from Red to Amber based on external review by Konstantinos Varvagiannis and the new paper Shukla et al., 2019 (PMID:30941876). The original Asn820Ser variant from Schuurs-Hoeijmakers et al., 2013 (PMID:24123876) is still listed as a VUS in OMIM due to a lack of evidence for association with the ID phenotype. Although Shukla et al report 3 cases with 3 new BCORL1 variants (two unrelated males and a further three brothers), patient 2 does not have ID, but instead has typical early motor milestones, and speech delay. ID is also mild in Patient 1. Based on 2 clear cases plus 1 potential case from Shukla et al,. I have rated Amber and added a 'watchlist' tag awaiting further reports.
Intellectual disability - microarray and sequencing v2.558 ODC1 Konstantinos Varvagiannis gene: ODC1 was added
gene: ODC1 was added to Intellectual disability. Sources: Literature,Expert Review
Mode of inheritance for gene: ODC1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ODC1 were set to 30239107; 30475435
Phenotypes for gene: ODC1 were set to Global developmental delay; Intellectual disability; Macrocephaly; Alopecia; Ectodermal dysplasia
Penetrance for gene: ODC1 were set to unknown
Review for gene: ODC1 was set to GREEN
Added comment: PMIDs 30239107 and 30475435 report on 5 cases of de novo truncating ODC1 variants in unrelated families. One concerned a stillborn male. The 4 remaining individuals presented with a similar phenotype consisting of alopecia and other ectodermal anomalies, DD/ID, relative or absolute macrocephaly and common facial features. DD/ID was severe in some instances and many of these individuals had extensive prior testing for other disorders (Fragile-X, PTEN, SLC2A1, chromosomal disorders, etc).

ODC1 (ornithine decarboxylase 1) converts enzymatically ornithine to putrescine. All variants reported to date are truncating but lead to gain-of-function. Specifically they affect a 37 amino acid c-terminal destabilization region critical for the degradation of ODC1 and - as a result - lead to increased levels of ODC1 as well as putrescine.

A mouse model with identical phenotype has been described several years ago.

The role of ODC inhibitors is extensively discussed in both publications.

As a result, ODC1 can be considered for inclusion in the ID panel as green (or amber).
Sources: Literature, Expert Review
Intellectual disability - microarray and sequencing v2.555 MACF1 Konstantinos Varvagiannis gene: MACF1 was added
gene: MACF1 was added to Intellectual disability. Sources: Literature,Expert Review
Mode of inheritance for gene: MACF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: MACF1 were set to Intellectual disability; Seizures; Lissencephaly; Brainstem dysplasia
Penetrance for gene: MACF1 were set to unknown
Mode of pathogenicity for gene: MACF1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: MACF1 was set to GREEN
Added comment: Dobyns et al. (doi.org/10.1016/j.ajhg.2018.10.019) report on 9 individuals (all unrelated appart from a pair of monozygotic twins) with de novo variants in MACF1.

All patients presented lissencephaly and brainstem hypoplasia with associated intellectual disability (9/9) and seizures (9/9).

Seven of these individuals had de novo missense variants within the GAR domain and an eighth had a deletion of several exons also spanning this domain and leading to an in-frame deletion. A further ninth patient had a de novo missense variant in the spectrin repeat domain and was found to have similar features although the brainstem dysplasia was rather subtle.

5 missense variants (4 of which in the GAR domain) and an intragenic deletion are reported in total.

The variants in the GAR domain were predicted to have important effect in the zinc-binding pocket. The spectrin repeat (SR4) is thought to have an important role for the function of MACF1 and further to neuronal migration.

Knockdown of Macf1 in mice has been shown to result in developmental defects similar to the human malformation.

The authors note that several high-confidence loss-of-function mutations are listed in ExAC and as a result this type of variants could be non-pathogenic (or lead to neurodevelopmental disorders with reduced penetrance). Still MACF1 has a pLI of 1.0.

As for the missense variants, the authors suggest either a gain-of-function or dominant negative mechanism.

Caution should be taken when interpreting variants as the ENST00000372915.7 (or MACF1-204) transcript is used for the predicted protein changes, although ENST00000361689.6 or MACF1-203 (corresponding to NM_012090.5) has also been used in some tables or figures.

As a result, this gene can be considered for inclusion in this panel probably as green.
Sources: Literature, Expert Review
Intellectual disability - microarray and sequencing v2.530 TUBA8 Rebecca Foulger Added comment: Comment on list classification: Demoted from Green to Amber based on re-review of evidence. Demotion agreed by Clinical Fellow Helen Brittain.

TUBA8 was originally rated Green on the panel because TUBA8 is a confirmed DD-G2P gene for 'POLYMICROGYRIA WITH OPTIC NERVE HYPOPLASIA' (the former name for Cortical dysplasia, complex, with other brain malformations 8, 613180) and TUBA8 is on the UKGTN 43 gene panel for brain malformations:
https://ukgtn.nhs.uk/find-a-test/search-by-disorder-gene/brain-malformation-disorders-cortical-43-gene-panel-886/.

However, the reported evidence comes from one 2009 paper (PMID:19896110) with 4 literature cases coming from 2 consaguineous families (1 variant); at least PMID:25008804 questions whether the families are related. A 2017 paper identifies an additional VUS (compound heterozygous) in a chinese EE patient (PMID:29588952).

Anna de Burca confirmed that there are lots of cases with CNVs involving TUBA8 in DECIPHER but there are only two cases with SNVs in the gene. One of them is classified as unknown pathogenicity, the other likely benign.

I contacted Usha Kini at Oxford, and also the Leeds and Cardiff genetic testing groups (as recommended by Usha) since they all offer cortical malformation panels. All three confirmed (pers. comm. via email) that they have no further cases for TUBA8.

The literature evidence and communications from Oxford, Leeds and Cardiff all support demotion of TUBA8 to Amber rating: The phenotype is still appropriate for the panel but insufficient cases for diagnostic rating.

Added 'watchlist' tag to look out for further cases.
Intellectual disability - microarray and sequencing v2.468 STIL Louise Daugherty Source Victorian Clinical Genetics Services was added to STIL.
Intellectual disability - microarray and sequencing STIL BRIDGE consortium edited their review of STIL
Intellectual disability - microarray and sequencing STIL BRIDGE consortium edited their review of STIL
Intellectual disability - microarray and sequencing STIL BRIDGE consortium reviewed STIL