Activity

Filter

Cancel
Date Panel Item Activity
4 actions
Intellectual disability - microarray and sequencing v2.981 TKT Catherine Snow Tag watchlist tag was added to gene: TKT.
Intellectual disability - microarray and sequencing v2.979 TKT Catherine Snow Mode of inheritance for gene TKT was changed from to BIALLELIC, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v2.978 TKT Catherine Snow gene: TKT was added
gene: TKT was added to Intellectual disability. Sources: Literature,Expert Review Amber
Mode of inheritance for gene: TKT was set to
Publications for gene: TKT were set to 27259054; 30914295
Phenotypes for gene: TKT were set to Short stature, developmental delay, and congenital heart defects, 617044
Intellectual disability - microarray and sequencing v2.798 P4HTM Konstantinos Varvagiannis gene: P4HTM was added
gene: P4HTM was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: P4HTM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: P4HTM were set to 30940925; 25078763
Phenotypes for gene: P4HTM were set to Central hypotonia; Muscular hypotonia; Global developmental delay; Intellectual disability; Seizures; Abnormality of the eye; Hypoventilation; Sleep apnea; Dysautonomia
Penetrance for gene: P4HTM were set to Complete
Review for gene: P4HTM was set to GREEN
Added comment: Rahikkala et al. (2019 - PMID: 30940925) report on 13 individuals from 5 families with biallelic pathogenic P4HTM variants. 6 of these individuals from a large consanguineous family from Finland were previously reported by the same group, although studies at the time had revealed a 11.5 Mb region of homozygosity with 3 genes within this interval considered to be candidate for the patients' phenotype (P4HTM, TKT, USP4) [Kaasinen et al. - PMID: 25078763].

Common features included Hypotonia (13/13), DD and ID (the latter present in 12/13 individuals with appropriate age for evaluation) and Eye Abnormalities, reason why the acronym HIDEA is suggested for the disorder. Epilepsy was observed in 10 individuals (10/13). Hypoventilation, sleep apnea and dysautonomia were additional features reported.

Muscle biopsies from 4 individuals had variable findings suggestive of disruption of normal mitochondrial function.

Finnish patients were homozygous for a SNV - possibly a founder variant in this population - predicted to lead to a missense change in the canonical transcript (NM_177938.2:c.1073G>A) but causing an in-frame loss of the complete exon 6 of another transcript (NM_177939.2).

The latter transcript (encoding a 502 aa protein) is the prevalent one in fibroblasts/myoblasts instead of the canonical one (563 aa). It is not known whether the canonical transcript is the prevalent in brain tissue although northern blot analysis in a previous study suggested presence of a 2.3 kb mRNA in brain instead of a 1.8 kb observed in other tissues, a finding which may be suggestive of expression of the canonical transcript. [Reviewer's note: In gnomAD based on the pext values from the GTEx, the noncanonical transcript appears to be prevalent in brain regions - https://gnomad.broadinstitute.org/gene/ENSG00000178467]

All variants reported in affected both transcripts. All 5 variants have been submitted to LOVD ( https://databases.lovd.nl/shared/variants/P4HTM?search_var_status=%3D%22Marked%22%7C%3D%22Public%22 - the first author appearing as the submitter).

Overexpression of wt and 3 mutants (His161Pro, Gln352*and Exon6del) in insect cells followed by analysis with SDS-PAGE and western blot revealed severly reduced/abolished fraction of soluble protein for the 3 studied variants suggesting improper protein folding.

Knockout of the gene in mice leads to retinal defects and/or visual impairment in line with eye abnormalites (nystagmus, strabismus, achromic retinal fundi or cortical blindness) being a prominent feature in affected individuals. Mouse studies suggest that this gene is also important for renal function, although kidney problems were not reported in any affected individual.

Overall loss-of-function is suggested to be the underlying mechanism.

P4HTM is not associated with any phenotype in OMIM, nor in G2P. This gene is not (at least commonly) included in gene panels for ID offered by diagnostic laboratories.

As a result P4HTM can be considered for inclusion in the ID and epilepsy panels probably as green (several affected individuals, degree of ID relevant) or amber.
Sources: Literature