Activity

Filter

Cancel
Date Panel Item Activity
10 actions
Intellectual disability v5.114 RAC3 Arina Puzriakova Publications for gene: RAC3 were set to 29276006; 30293988
Intellectual disability v5.113 RAC3 Arina Puzriakova Classified gene: RAC3 as Green List (high evidence)
Intellectual disability v5.113 RAC3 Arina Puzriakova Gene: rac3 has been classified as Green List (High Evidence).
Intellectual disability v5.112 RAC3 Arina Puzriakova All sources for gene: RAC3 were removed
Intellectual disability v5.112 RAC3 Arina Puzriakova All sources for gene: RAC3 were removed
Intellectual disability v3.1539 RAC3 Arina Puzriakova Phenotypes for gene: RAC3 were changed from Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies, 618577; Abnormality of brain morphology, Abnormal muscle tone, Neurodevelopmental delay, Intellectual disability; Abnormality of brain morphology; Abnormal muscle tone; Neurodevelopmental delay; Intellectual disability to Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies, OMIM:618577
Intellectual disability v3.0 MN1 Konstantinos Varvagiannis gene: MN1 was added
gene: MN1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: MN1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MN1 were set to 31834374; 31839203; 15870292
Phenotypes for gene: MN1 were set to Central hypotonia; Feeding difficulties; Global developmental delay; Intellectual disability; Hearing impairment; Abnormality of facial skeleton; Craniosynostosis; Abnormality of the face; Abnormality of the cerebellum; Abnormality of the corpus callosum; Polymicrogyria
Penetrance for gene: MN1 were set to Complete
Review for gene: MN1 was set to GREEN
Added comment: Two studies by Mak et al (2019 - PMID: 31834374 / Ref1) and Miyake et al (2019 - PMID: 31839203 / Ref2) provide sufficient evidence for heterozygous MN1 C-terminal truncating variants (predicted to escape NMD - localizing within the last nucleotides of exon 1 or in exon 2) being associated with a distinctive phenotype and DD and ID among the features.

Mak et al also discuss on the phenotype of individuals with variants causing N-terminal truncation or with MN1 deletions (discussed at the end of this review).

Overlapping features for C-terminal truncating variants included hypotonia, feeding difficulties, global DD and ID, hearing loss, cranial shape defects (/craniosynostosis in few), highly suggestive/distinctive facial features (eg. frontal bossing, hypertelorism, downslanting palpebral-fissures, shallow orbits, short upturned nose, low-set/posteriorly rotated/dysplastic ears, etc) and brain MRI abnormalities (eg. rhomboencephalosynapsis or cerebellar dysplasia, polymicrogyria, dysplastic CC).

The majority of the affected individuals were investigated by WES/WGS with a single one tested by targeted MN1 Sanger sequencing due to highly suggestive features. Variable previous investigations incl. CMA in several, gene panel testing (Rasopathies, hearing loss, craniofacial panels, FMR1, etc) and metabolic work were normal in most. In a single case a likely pathogenic ACSL4 also explained part of the phenotype (Ref2). In the majority of these individuals, the variant had occured as a de novo event. Two sibs had inherited the truncating variant from a milder affected mosaic parent. A parental sample was not available for an additional individual.

p.(Arg1295*) or NM_002430.2:c.3883C>T was a recurrent variant, seen in several individuals and in both studies.

Several lines of evidence are provided for the MN1 variants and the role of the gene including:
- For few individuals for whom cell lines were available, variants were shown to escape NMD by cDNA/RT-PCR/RNA-seq [Ref1 & 2].
- The gene has a high expression in fetal brain [Ref2 / fig S2]
- MN1 (* 156100 - MN1 protooncogene, transcriptional regulator) has been proposed to play a role in cell proliferation and shown to act as transcription cofactor (increasing its transactivation capacity in synergy with coactivators EP300 and RAC3) [Discussion and Refs provided in Ref2].
- In vitro studies suggested increased protein stability (upon transfection of wt/mut constructs in HEK293T cells), enhanced MN1 aggregation in nuclei (when wt/mut GFP-tagged MN1 was expressed in HeLa cells), increased inhibitory effect on cell growth (MG63 cells - role of MN1 in cell proliferation discussed above) and retained transactivation activity (upon transient MN1 overexpression of wt/mt MN1 in HEK293T cells) for the variants. These seem to support a gain-of-function effect for the C-terminal truncating variants [Ref2].
- The truncating variants are proposed to raise the fraction of Intrinsically disordered regions (IDRs = regions without fixed tertiary structure) probably contributing to the above effects [Ref2].
- Expression of FLAG-tagged MN1 wt/mut MN1 followed by immunoprecipitation and mass spectrometry analysis (mCAT-Hela cells), provided evidence that MN1 is involved in transcriptional regulation: a. through binding ZBTB24 and RING1 E3 ubiquitin ligase (with mutant MN1 displaying impaired interaction with ZBTB24 and no binding to RING1) and/or b. through interaction with DNA-binding transcription factors PBX1 and PKNOX1. Proper MN1 degradation is proposed to mediate precise transcriptional regulation. [Ref2]
- Transcriptome analysis in LCLs from an affected individual suggested dysregulation of genes relevant to neuronal development (eg. LAMP, ITGA, etc) and GO analysis suggested enrichment for pathways possibly linked to the observed phenotypes [Ref2].
- Discussed in both Refs1/2, homozygous Mn1-ko mice display abnormal skull bone development and die at/shortly after birth as a result of cleft palate. Heterozygous Mn1-ko mice display hypoplastic membranous bones of the cranial skeleton and cleft palate (CP), the latter with incomplete penetrance [Meester-Smoor et al 2005 - PMID: 15870292]. This is thus compatible with the cranial shape defects observed in C-terminal truncations (while CP has been reported in gene deletions, bifid uvula was reported once in C-terminal and N-terminal truncating variants, in the latter case with submucous CP).
-----
The phenotype of other MN1 variants is discussed by Mak et al (Ref1) :
- 3 individuals with MN1 N-terminal truncating variants (eg. Ser179*, Pro365Thrfs*120, Ser472*) presented speech delay, mild conductive hearing loss and facial features different from C-terminal truncations. None of these individuals had significant ID.
- Microdeletions: One individual (#27) with 130 kb deletion harboring only MN1, presented microcephaly, DD and ID and mildly dysmorphic facial features. Deletions spanning MN1 and other genes (eg a 1.17 Mb deletion in ind. #28) and relevant cases from the literature reviewed, with mild DD/ID, variable palatal defects and/or facial dysmorphisms (distinct from the C-terminal truncating variants) among the frequent findings.

[Please consider inclusion in other possibly relevant gene panels eg. for hearing loss (conductive/sensorineural in 16/20 reported by Mak et al) or craniosynostosis, etc].
Sources: Literature
Intellectual disability v2.1060 RAC3 Rebecca Foulger Phenotypes for gene: RAC3 were changed from Abnormality of brain morphology, Abnormal muscle tone, Neurodevelopmental delay, Intellectual disability; Abnormality of brain morphology; Abnormal muscle tone; Neurodevelopmental delay; Intellectual disability to Neurodevelopmental disorder with structural brain anomalies and dysmorphic facies, 618577; Abnormality of brain morphology, Abnormal muscle tone, Neurodevelopmental delay, Intellectual disability; Abnormality of brain morphology; Abnormal muscle tone; Neurodevelopmental delay; Intellectual disability
Intellectual disability v2.978 RAC3 Catherine Snow Source Expert Review Green was added to RAC3.
Source Expert Review was added to RAC3.
Added phenotypes Abnormality of brain morphology, Abnormal muscle tone, Neurodevelopmental delay, Intellectual disability for gene: RAC3
Publications for gene RAC3 were changed from 30293988; 29276006 to 29276006; 30293988
Rating Changed from No List (delete) to Green List (high evidence)
Intellectual disability v2.509 RAC3 Konstantinos Varvagiannis gene: RAC3 was added
gene: RAC3 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: RAC3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RAC3 were set to 30293988; 29276006
Phenotypes for gene: RAC3 were set to Abnormality of brain morphology; Abnormal muscle tone; Neurodevelopmental delay; Intellectual disability
Penetrance for gene: RAC3 were set to unknown
Mode of pathogenicity for gene: RAC3 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: RAC3 was set to GREEN
Added comment: PMID: 30293988 reports on 5 individuals (from 4 different families) with de novo missense variants in RAC3. All individuals demonstrated structural anomalies on brain MRI (notably agenesis/dysgenesis of the corpus callosum, variable degrees of polymicrogyria and ventricular anomalies) as well as shared non-specific neurological features including abnormal muscular tone, global developmental delay and severe to profound intellectual disability. Feeding difficulties were observed in 4/5 patients.

All variants reported are missense and are presumed to result in constitutive protein activation, as suggested by previous observations either in RAC3 [eg. the p.(Gln61Leu) mutation] or the highly homologous RAC1 and RAC2. According to the authors this is further supported by the fact that Rac3 -/- mice do not show a severe phenotype while missense variants are underrepresented in the ExAC database (z=1.97) as opposed to loss-of-function variants (pLI=0.04 / probability of loss-of-function intolerance).

Of the 3 SNVs reported, 2 variants were in adjacent amino-acid positions [p.(Gln61Leu) and p.(Glu62Lys)]. The latter variant was found in 2 half-sibs born to different fathers, due to suspected maternal gonadal mosaicism (variant absent in all sequencing reads in the maternal DNA sample). The specific variant was also found in a further affected individual from an unrelated family.

Finally, as the authors point out a further individual with de novo RAC3 missense variant [p.(Ala59Gly)] was reported previously in an individual with thin corpus callosum and global developmental delay, although the phenotype was felt to be more reminiscent of Robinow syndrome (PMID: 29276006).

As a result, this gene can be considered for inclusion in the ID panel as green (or amber).
Sources: Literature