Activity

Filter

Cancel
Date Panel Item Activity
6 actions
Intellectual disability v5.458 CAMSAP1 Achchuthan Shanmugasundram Classified gene: CAMSAP1 as Amber List (moderate evidence)
Intellectual disability v5.458 CAMSAP1 Achchuthan Shanmugasundram Added comment: Comment on list classification: There is sufficient evidence available for the promotion of this gene to green rating in the next GMS review.
Intellectual disability v5.458 CAMSAP1 Achchuthan Shanmugasundram Gene: camsap1 has been classified as Amber List (Moderate Evidence).
Intellectual disability v5.457 CAMSAP1 Achchuthan Shanmugasundram Tag Q1_24_promote_green tag was added to gene: CAMSAP1.
Intellectual disability v5.457 CAMSAP1 Achchuthan Shanmugasundram gene: CAMSAP1 was added
gene: CAMSAP1 was added to Intellectual disability - microarray and sequencing. Sources: Literature
Mode of inheritance for gene: CAMSAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAMSAP1 were set to 36283405
Phenotypes for gene: CAMSAP1 were set to Cortical dysplasia, complex, with other brain malformations 12, OMIM:620316
Review for gene: CAMSAP1 was set to GREEN
Added comment: Seven children from five unrelated families were identified with either homozygous or compound heterozygous CAMSAP1 variants and were reported with a severe neurodevelopmental disorder apparent from infancy. Clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, lissencephaly, agenesis or severe hypogenesis of the corpus callosum, severe or profound global developmental delay, cortical visual impairment, and seizures.

This gene has been associated with relevant phenotypes in both OMIM (MIM #620316) and in Gene2Phenotype (with 'moderate' rating in the DD panel).
Sources: Literature
Intellectual disability v2.1046 PMPCA Konstantinos Varvagiannis gene: PMPCA was added
gene: PMPCA was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: PMPCA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PMPCA were set to 25808372; 26657514; 27148589; 30617178
Phenotypes for gene: PMPCA were set to Spinocerebellar ataxia, autosomal recessive 2 (MIM 213200)
Penetrance for gene: PMPCA were set to Complete
Review for gene: PMPCA was set to GREEN
gene: PMPCA was marked as current diagnostic
Added comment: Biallelic pathogenic PMPCA variants cause Spinocerebellar ataxia, autosomal recessive 2 (SCAR2 - MIM 213200). More than 20 individuals from several unrelated families have been reported. At least 6 different pathogenic variants have been identified. Loss of PMPCA function is the suggested mechanism. ID is a feature of the disorder.

PMPCA encodes the α-subunit of mitochondrial processing peptidase (αMPP), a heterodimeric enzyme responsible for the cleavage of nuclear-encoded mitochondrial precursor proteins after import in the mitochondria (summary by Jobling et al and OMIM).

Arguments for involvement of the gene include the highly similar phenotype, segregation studies, expression of the gene in fetal and relevant adult tissues (in brain/cerebellum/cerebellar vermis), lower protein levels demonstrated for some variants, abnormal processing of frataxin (in line with the role of αMPP) demonstrated in most cases, rescue of the maturation defect upon transduction of wt PMPCA cDNA, disruption of REDOX balance in patient cells, etc.

Relevant studies are summarized below.

PMPCA is included in gene panels for ID offered by several diagnostic laboratories (incl. Radboud UMC, GeneDx, etc) and listed as a confirmed ID gene in SysID. It is not associated with any phenotype in G2P.

As a result, this gene can be considered for inclusion in the current panel probably as green (or amber).

----

[1] - Jobling et al. (2015 - PMID: 25808372) described the phenotype of 17 individuals from 4 families, all presenting with non-progressive cerebellar ataxia and the majority with ID of variable severity (15/17 - relevant to the current panel). Individuals from 3 of the families - all of Lebanese origin - were homozygous for NM_015160.3:c.1129G>A (p.Ala377Thr). A further similarly affected subject was compound heterozygous for c.287C>T (p.Ser96Leu) and c.1543G>A (p.Gly515Arg).

The homozygous variant in the first family was found within a 2.85 Mb linkage region on chr 9q34. An additional variant within this region (in CAMSAP1) was discarded following results in other families of the same origin.

Semi-quantitative RT-PCR demonstrated fetal expression of the PMPCA as well as relatively higher expression in adult brain, cerebellum and cerebellar vermis.

As for Ala377Thr, protein levels were shown to be lowest in affected individuals (LCLs, fibroblasts) and low - though somewhat higher - in carrier parents (LCL) compared to controls. RT-PCR on total RNA from LCLs did not show evidence of abnormal transcripts/additional splicing defect. Localization of mutant protein and morphology of mitochondrial reticulum was similar to controls. Maturation of frataxin - the protein depleted in Friedreich ataxia - was shown to be abnormal in patient lymphoblasts, compatible with the role of αMPP. In line with abnormal mitochondrial function, REDOX balance was increased in patient cells.

[2] - Choquet et al. (2016 - PMID: 26657514) reported on 2 sibs - born to distantly related parents. The authors noted a phenotype corresponding to SCAR2 although the presentation was somewhat milder, intellectual disability was not a feature (despite some learning difficulties in one) and ataxia was progressive. WES demonstrated homozygosity for NM_015160:c.766G>A (p.Val256Met). Western blot in patient lymphoblasts showed αMPP levels similar to carriers and controls. Abnormal maturation (accumulation of specific isoforms) was shown for frataxin.

[3] - Joshi et al. (2016 - PMID: 27148589) described the phenotype of 2 cousins belonging to a large Lebanese pedigree. Presentation in both was compatible with multisystem involvement incl. profound global DD, severe hypotonia, weakness, respiratory insufficiency, blindness suggestive of mitochondrial disorder. mtDNA, analyses of mitochondrial focused nuclear gene panel and aCGH were non-diagnostic. Both subjects were compound heterozygous for NM_015160.3:c.1066G>A (p.Gly356Ser) and c.1129G>A (p.Ala377Thr) following WES, with compatible segregation studies within the family. Western blot revealed PMPCA levels similar to control. Reduction of PMPCA staining and abnormally enlarged mitochondria were observed upon immunofluorescence in patient fibroblasts. Frataxin processing was abnormal. Lentiviral transduction of patient fibroblasts with wt PMPCA cDNA, led to increased PMPCA levels and correction of frataxin processing.

[4] - Rubegni et al. (2019 - PMID: 30617178) report on a 7-y.o. boy with global DD, spastic-ataxic gait and 'low IQ'. MRI images were suggestive of cerebellar atrophy with hyperintensity in the striatum. The child was homozygous for c.553C>T / p.Arg185Trp (reference not specified, although the variant would be compatible with NM_015160.3).
Sources: Literature, Radboud University Medical Center, Nijmegen