Activity

Filter

Cancel
Date Panel Item Activity
101 actions
Intellectual disability - microarray and sequencing v5.514 PTRHD1 Arina Puzriakova Added comment: Comment on phenotypes: Gene-checked tag removed as this gene now has a relevant phenotype listed in OMIM (Neurodevelopmental disorder with early-onset parkinsonism and behavioral abnormalities, OMIM:620747)
Intellectual disability - microarray and sequencing v5.514 PTRHD1 Arina Puzriakova Phenotypes for gene: PTRHD1 were changed from Intellectual disability; Parkinsonism to Neurodevelopmental disorder with early-onset parkinsonism and behavioral abnormalities, OMIM:620747
Intellectual disability - microarray and sequencing v5.502 CLEC16A Sarah Leigh edited their review of gene: CLEC16A: Added comment: Heterozygous CLEC16A variants have been identified as a genetic risk factor for several autoimmune disorders and for Parkinson disease (PMID: 37175930). PMID: 36538041 reports the neurological effect of homozygous terminating CLEC16A variants in two families. In family 1, the first child died at 5 months, he had progressive microcephaly, failure to thrive and cranial CT showed brain atrophy, dilatation of both central and peripheral liquor spaces, hypoplasia of the corpus callosum (no genetic testing was done), the third pregnancy was terminated (17 weeks of gestation) after prenatal ultrasound showed ventriculomegaly, agenesis of corpus callosum (no genetic testing was done), the fourth pregnancy was also terminated (22 weeks of gestation) as the prenatal ultrasound showed agenesis of corpus callosum. This fetus was homozygous for NM_001243403.1(CLEC16A):c.2062 + 5G > A, RT-PRC showed that this variant resulted in the deletion of exon 19 and a frame shift. Both parents and an unaffected sibling were heterozygous for this variant. In family 2, a single affected child was homozygous for NM_001243403.1(CLEC16A):c.-4_12del, p.Met1fs*. This child had progressive microcephaly, failure to thrive, severe global developmental delay, global brain atrophy and died at 6 years. There is no genetic data from the parents or unaffected siblings in Family 2. PMID: 37175930, also presents zebrafish experiments, where mutagenesis of
clec16a by CRISPR–Cas9 resulted in accumulated acidic/phagolysosome compartments, in neurons
and microglia, and dysregulated mitophagy. This was rescued by wild type CLEC16A, but not by the C-terminal truncated variant. The authors conclude that dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration.; Changed rating: GREEN; Changed publications to: 36538041; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v5.499 ZFHX3 Sarah Leigh edited their review of gene: ZFHX3: Added comment: Personal communication from Nour Elkhateeb (Clinical Fellow in Genomics, Genomics England): we have data about 12 individuals with nonsense/frameshift/exon deletions in ZFHX3. Five of the variants are located in exon 9/10 or exon 9, which has been shown to harbour the highest density of pathogenic variants (PMID: 38412861). Eleven of these cases presented with developmental delay / intellectual disability and a range of other features, including dysmorphology, seizures and failure to thrive.; Changed publications to: 38412861
Intellectual disability - microarray and sequencing v5.216 CNOT9 Achchuthan Shanmugasundram gene: CNOT9 was added
gene: CNOT9 was added to Intellectual disability - microarray and sequencing. Sources: Literature
Mode of inheritance for gene: CNOT9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CNOT9 were set to 37092538
Phenotypes for gene: CNOT9 were set to intellectual disability, MONDO:0001071
Review for gene: CNOT9 was set to GREEN
Added comment: PMID:37092538 - Seven unrelated individuals with de novo variants in CNOT9 gene (one individual each with variants p.Arg46Gly, p.Pro131Leu and p.Arg227His and four individuals with p.Arg292Trp) were reported with a neurodevelopmental disorder. All affected persons have intellectual disability (three severe, three mild and one unclassified) and five of them have seizures.

This gene has not yet been associated with relevant phenotypes either in OMIM or in Gene2Phenotype.
Sources: Literature
Intellectual disability - microarray and sequencing v5.201 PTPA Achchuthan Shanmugasundram Phenotypes for gene: PTPA were changed from Intellectual disability; Parkinsonism to Intellectual disability, MONDO:0001071
Intellectual disability - microarray and sequencing v5.171 TRA2B Achchuthan Shanmugasundram changed review comment from: This gene has already been associated with phenotypes in Gene2Phenotype (with 'moderate' rating in the DD panel), but not in OMIM.
Sources: Literature; to: PMID:36549593 reported 12 individuals from 11 unrelated families identified with 11 different heterozygous variants in TRA2B gene. The variants arose de novo in 10 families, while the variant was inherited from father to son in one family. 6 variants were expected to disrupt the translation start site in exon 1 (start-loss variants), 3 were expected to disrupt the splicing process at the exon 2/3 boundary (splice-affecting variants), and the remaining 2 were expected to produce a premature stop codon (truncating variants).

These patients presented with a neurodevelopmental disorder comprising developmental delay/ intellectual disability (in all patients), axial or global hypotonia (10 patients), delayed motor milestones (all patients), behavioural issues (8 patients), speech impairment (9 patients), epilepsy (7 patients, initial presentation as infantile spasms in 6 and unclassified epileptic encephalopathy in 1), brain abnormalities (10 patients) and microcephaly (5 patients). The degree of ID was severe to profound for 6 individuals, moderate to severe for 2 and mild to moderate for 3.

In addition, functional studies in mice showed that heterozygous knockout mice developed normal, while complete knockout mice cannot develop embryonically.

This gene has already been associated with phenotypes in Gene2Phenotype (with 'moderate' rating in the DD panel), but not in OMIM.
Sources: Literature
Intellectual disability - microarray and sequencing v5.160 POU3F2 Sarah Leigh gene: POU3F2 was added
gene: POU3F2 was added to Intellectual disability - microarray and sequencing. Sources: Literature
Q2_23_promote_green tags were added to gene: POU3F2.
Mode of inheritance for gene: POU3F2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: POU3F2 were set to 37207645
Phenotypes for gene: POU3F2 were set to neurodevelopmental delay with hyperphagic obesity
Review for gene: POU3F2 was set to GREEN
Added comment: Not associated with a phenotype in OMIM, Gen2Phen or MONDO. PMID: 37207645 reports eight POU3F2 variants in the unrelated cases of neurodevelopmental delay with hyperphagic obesity, with no other variants detected in other candidate genes. Intellectual disability was apparent in 6/7 of these cases from infancy to early childhood. The remaining variant : NM_005604.4 c.135C>A, p.Tyr45* was found in a mother and son, where the son was classified as having intellectual disability, the mother did not. Excluding the mother and son, all of the remaining cases carrying POU3F2 variants had neurodevelopmental delay.
Sources: Literature
Intellectual disability - microarray and sequencing v5.54 SHANK1 Achchuthan Shanmugasundram changed review comment from: As reviewed by Zornitza Stark (Australian Genomics), PMID:34113010 reported six individuals who presented with neurodevelopmental disorders and identified with de novo truncating variants in SHANK1 gene. Of these six individuals, four had intellectual disability, one had severe learning difficulties and one with auditory processing disorder, difficulty with executive functioning, mathematic concepts, verbal reasoning and problem solving.; to: As reviewed by Zornitza Stark (Australian Genomics), PMID:34113010 reported six unrelated individuals who presented with neurodevelopmental disorders and identified with de novo truncating variants in SHANK1 gene. Of these six individuals, four had intellectual disability, one had severe learning difficulties and one with auditory processing disorder, difficulty with executive functioning, mathematic concepts, verbal reasoning and problem solving. Three of these patients were also reported with autism spectrum disorder.

This gene has been associated with relevant phenotypes in Gene2Phenotype (with 'strong' rating in the DD panel).
Intellectual disability - microarray and sequencing v5.53 SHANK1 Achchuthan Shanmugasundram edited their review of gene: SHANK1: Added comment: As reviewed by Zornitza Stark (Australian Genomics), PMID:34113010 reported six individuals who presented with neurodevelopmental disorders and identified with de novo truncating variants in SHANK1 gene. Of these six individuals, four had intellectual disability, one had severe learning difficulties and one with auditory processing disorder, difficulty with executive functioning, mathematic concepts, verbal reasoning and problem solving.; Changed phenotypes to: nearodevelopmental disorder, MONDO:0700092, intellectual disability, MONDO:0001071
Intellectual disability - microarray and sequencing v5.50 OTUD7A Achchuthan Shanmugasundram changed review comment from: PMID:31997314 reported a patient presenting with severe global developmental delay, language impairment and epileptic encephalopathy and was identified with homozygous variant in OTUD7A gene (c.697C>T)/ p.Leu233Phe).

PMID:33381903 reported a patient with profound hypotonia, severe intellectual disability, and seizures and identified with biallelic loss-of-function variants in OTUD7A: a 15q13.3 deletion including the OTUD7A locus, and a frameshift OTUD7A variant c.1125del/ p.Glu375Aspfs*11.

PMID:36180924 reported a patient (patient #4) presenting with severe neurodevelopmental diseases and dysmorphic features and identified with hemizygous OTUD7A frameshift variant allele c.2023_2066del/ p.D675Hfs*188 in trans with the recurrent 15q13.3 BP4-BP5 deletion.

OTUD7A knockout mice exhibited reduced body weight, developmental delay, abnormal electroencephalography patterns and seizures, reduced ultrasonic vocalisations, decreased grip strength, impaired motor learning/motor coordination, and reduced acoustic startle (PMID:29395075). The function evidence also suggest that OTUD7A may be the critical “driver gene” in the 15q13.3 deletion syndrome.; to: PMID:31997314 reported a patient presenting with severe global developmental delay, language impairment and epileptic encephalopathy and was identified with homozygous variant in OTUD7A gene (c.697C>T)/ p.Leu233Phe).

PMID:33381903 reported a patient with profound hypotonia, severe intellectual disability, and seizures and identified with biallelic loss-of-function variants in OTUD7A: a 15q13.3 deletion including the OTUD7A locus, and a frameshift OTUD7A variant c.1125del/ p.Glu375Aspfs*11.

PMID:36180924 reported a patient (patient #4) presenting with severe neurodevelopmental diseases and dysmorphic features and identified with hemizygous OTUD7A frameshift variant allele c.2023_2066del/ p.D675Hfs*188 in trans with the recurrent 15q13.3 BP4-BP5 deletion.

OTUD7A knockout mice exhibited reduced body weight, developmental delay, abnormal electroencephalography patterns and seizures, reduced ultrasonic vocalisations, decreased grip strength, impaired motor learning/motor coordination, and reduced acoustic startle (PMID:29395075). The function evidence also suggest that OTUD7A may be the critical “driver gene” in the 15q13.3 deletion syndrome.

This gene has been reported in the DD panel of Gene2Phenotype (with 'limited' rating), but has not yet been associated with phenotypes in OMIM.
Intellectual disability - microarray and sequencing v4.92 NUP214 Eleanor Williams changed review comment from: Associated with {Encephalopathy, acute, infection-induced, susceptibility to, 9} 618426 in OMIM and Gene2Phenotype (probable).

PMID: 31178128 - Fichtman et al 2019 - report on two families one of Palestinian decent, the other Northern European (not Finnish descent). Each had two affected siblings in which neurological decline was seen after febrile events. The older son in family A, exhibited minor developmental delay from infancy. A homozygous missense variant was identified in NUP214 (p.Arg38Cys) in family A and segregated with the disease in available family members. In family B affected sisters were compound heterozygous for a frameshift and a missense variant in NUP214 (p.Pro387Ser and p.Pro525Leufs∗6). Functional studies with fibroblasts from one patient in family A showed a decrease in NUP214 and NUP88 levels compared to controls,

PMID: 30758658 - Shamseldin et al 2019 - describe a multiplex consanguineous family in which four affected members presented with severe neonatal hypotonia, profound global developmental delay, progressive microcephaly and early death (<2 year old). Whole exome sequencing revealed the presence of a novel homozygous missense variant in NUP214, p.D154G.

PMID: 29483668 - Egloff et al 2018 - report a 4-year-old girl presenting with developmental delay, growth retardation and facial dysmorphism. She was found to have a 9q deletion inherited from her healthy mother and a hemizygous one-base pair deletion in the NUP214 gene inherited from her father. From patient leukocytes it was found that the expression level of the NUP214 transcript was significantly decreased and close to zero in the patient compared to the controls. ; to: Associated with {Encephalopathy, acute, infection-induced, susceptibility to, 9} 618426 in OMIM and Gene2Phenotype (probable).

PMID: 31178128 - Fichtman et al 2019 - report on two families one of Palestinian decent, the other Northern European (not Finnish descent). Each had two affected family members in which neurological decline was seen after febrile events. The older son in family A, exhibited minor developmental delay from infancy. A homozygous missense variant was identified in NUP214 (p.Arg38Cys) in family A and segregated with the disease in available family members. In family B affected sisters were compound heterozygous for a frameshift and a missense variant in NUP214 (p.Pro387Ser and p.Pro525Leufs∗6). Functional studies with fibroblasts from one patient in family A showed a decrease in NUP214 and NUP88 levels compared to controls,

PMID: 30758658 - Shamseldin et al 2019 - describe a multiplex consanguineous family in which four affected members presented with severe neonatal hypotonia, profound global developmental delay, progressive microcephaly and early death (<2 year old). Whole exome sequencing revealed the presence of a novel homozygous missense variant in NUP214, p.D154G.

PMID: 29483668 - Egloff et al 2018 - report a 4-year-old girl presenting with developmental delay, growth retardation and facial dysmorphism. She was found to have a 9q deletion inherited from her healthy mother and a hemizygous one-base pair deletion in the NUP214 gene inherited from her father. From patient leukocytes it was found that the expression level of the NUP214 transcript was significantly decreased and close to zero in the patient compared to the controls.
Intellectual disability - microarray and sequencing v4.63 RAB39B Achchuthan Shanmugasundram Phenotypes for gene: RAB39B were changed from Mental retardation, X-linked 72, 300271; Mental Retardation, X-linked; MENTAL RETARDATION X-LINKED TYPE 72 (MRX72) +/- PARKINSONS to Intellectual developmental disorder, X-linked 72, OMIM:300271; Waisman syndrome, OMIM:311510
Intellectual disability - microarray and sequencing v3.1726 SCAMP5 Sarah Leigh changed review comment from: Comment on list classification: Not associated with phenotype in OMIM (last edited on 10/06/2014) or in Gen2Phen. Two variants have been identified in three unrelated cases (one monoallelic, one biallelic). Supportive functional studies have been reported.
It would appear that the two variants reported so far in this gene result in differing mode of pathogenicity and phenotypic features. With heterozygous c.538G>T, p.Gly180Trp seeming to have a dominant-negative effect resulting in autistic spectrum disorder, intellectual disability and seizures. While homozygous c.271C>T, p.R91W seems to have a loss of function effect resulting in early onset epilepsy and Parkinson’s disease. This may be due to different functional domains of the mature protein being altered.
Based on this evidence, SCAMP5 is rated as Amber, with a Watchlist tag. This status may change if further cases are reported.; to: Comment on list classification: Not associated with phenotype in OMIM (last edited on 10/06/2014) or in Gen2Phen. Two variants have been identified in three unrelated cases (one monoallelic, one biallelic). Supportive functional studies have been reported.
It would appear that the two variants reported so far in this gene result in differing mode of pathogenicity and phenotypic features. With heterozygous c.538G>T, p.Gly180Trp seeming to have a dominant-negative effect resulting in autistic spectrum disorder, intellectual disability and seizures. While homozygous c.271C>T, p.R91W seems to have a loss of function effect resulting in early onset epilepsy and Parkinson’s disease. This may be due to different functional domains of the mature protein being altered.
Based on this evidence, SCAMP5 is rated as Amber, with a Watchlist tag. This status may change if further cases are reported.
Intellectual disability - microarray and sequencing v3.1720 PTPA Konstantinos Varvagiannis gene: PTPA was added
gene: PTPA was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PTPA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTPA were set to 36073231
Phenotypes for gene: PTPA were set to Intellectual disability; Parkinsonism
Penetrance for gene: PTPA were set to Complete
Review for gene: PTPA was set to AMBER
Added comment: Biallelic PTPA pathogenic variants lead to a form of ID with later-onset parkinsonism based on 4 individuals from 2 families in the literature. Affected individuals were homozygous for missense variants demonstrated to result to reduced mRNA and protein levels as well as PP2A complex activation. Drosophila studies support an age-dependent locomotor dysfunction. Variants in other PP2A-complex-related genes also lead to NDDs. Summary provided below.

There is currently no associated phenotype in OMIM, G2P, PanelApp Australia or SysNDD.

Consider inclusion in relevant panels (ID, Parkinsonism/movement disorders, etc) with amber rating pending further reports.

------

Fevga, Tesson et al (2022 - PMID: 36073231) describe the features of 4 individuals, from 2 unrelated families, with biallelic pathogenic PTPA variants.

These presented with normal or delayed early milestones, learning disability and ID (mild to moderate) followed by progressive signs of parkinsonism (at the age of 11 yrs in 2 sibs, 15 yrs in another individual). Motor symptoms were responsive to levodopa and later to deep brain stimulation.

Linkage analysis in one consanguineous family followed by exome revealed homozygosity for a missense PTPA variant (NM_178001:c.893T>G/p.Met298Arg). Exome sequencing in affected subjects from the 2nd family revealed homozygosity for a further missense variant (c.512C>A/p.Ala171Asp). There were no other candidate variants for the phenotype following parental / segregation studies.

Role of the gene:
As the authors discuss, PTPA (or PPP2R4) is ubiquitously expressed in all tissues incl. brain and encodes a phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase-2A (PP2A). PP2A in turn, is the major Ser/Thr phosphatase in brain targeting a large number of proteins involved in diverse functions. Activation of PP2A is dependent on its methylation, which is negatively regulated by the PP2A-specific methylesterase (PME-1). By binding to PME-1, PTPA counteracts the negative influence of the former on PP2A. Pathogenic variants in genes encoding subunits/regulators of the PP2A complex (e.g. PPP2R1A or PPP2CA) are associated with neurodevelopmental disorders.

Variant studies:
Upon overexpression of wt and both variants in a HEK-293 cell line the authors demonstrated that both variants resulted in significantly reduced mRNA and protein levels (which for Ala171Asp were attributed to increased proteasomal degradation). Both variants were shown to result in impaired PP2A complex activation compared to wt.

Drosophila / animal models:
Pan-neuronal RNAi-mediated knockdown of ptpa in Drosophila resulted in an age-dependent locomotor dysfunction, reversible with L-DOPA treatment.
Previous studies in mice suggest cognitive/electrophysiological impairments upon downregulation of PP2A activity in transgenic mice.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1615 NR4A2 Sarah Leigh Phenotypes for gene: NR4A2 were changed from Language impairment; Intellectual disability; Autism; Behavioral abnormality; No OMIM number to Intellectual developmental disorder with language impairment and early-onset DOPA-responsive dystonia-parkinsonism, OMIM:619911
Intellectual disability - microarray and sequencing v3.1581 SCAF4 Sarah Leigh edited their review of gene: SCAF4: Added comment: In repsonse to Ian Berry's (Leeds Genetics Laboratory) review, which also reports an additional patient with a de novo truncating variant, there is sufficient evidence for SCAF4 to be green on this panel.; Changed rating: GREEN
Intellectual disability - microarray and sequencing v3.1580 SRRM2 Konstantinos Varvagiannis changed review comment from: Recent report of 22 unrelated individuals with nonsense / frameshift variants or microdeletions of SRRM2 reported. DD was a universal feature, with ID present in some (16/20 - in all cases mild). Note possible 'overlap' with the study by Kaplanis et al / DDD study cited in the previous review by Prof. Z. Stark.

The gene is not intolerant to missense variation (z-score of -6.28) and eventual contribution of missense variants is not known. While SRRM2 is known to encode a splicing factor promoting interaction between mRNA and the spliceosome catalytic machinery (discussed below) molecular and functional studies are required to characterize the pathogenesis of the disorder.

There is currently no SRRM2-related phenotype in OMIM. SRRM2 is included in the DD panel of G2P [confidence : definitive, SRRM2-related developmental disorder (monoallelic), cited : Kaplanis et al / DDD]. In PanelApp Australia SRRM2 has amber rating in the ID panel (based on the study by Kaplanis et al / DDD).

Consider inclusion with green rating (several individuals/families/variants - rather consistent phenotype) or amber rating (as for pathogenesis / also DD universal feature, ID observed in most but not all affected individuals, when present always mild).

-----

Cuinat et al. (2022 - PMID: 35567594) report on 22 individuals with LoF variants in SRRM2.

All subjects had DD (22/22) predominantly affecting language acquisition (16/19) while motor delay was less common. ID was present in 16/20 (in all cases mild) of the individuals with available neurocognitive evaluation. Some individuals displayed autistic features (9/22) although others had a friendly - in some cases excessively - sociable personality (8/22). Other features included hypotonia in some, growth abnormalities (12/22 overweight, 7/22 with obesity, 4/22 tall stature). Morphological features incl. facial (20/22 - e.g. deep-set eyes, bulbous nasal tip or smooth philtrum) or small hands and feet (6/22) were also reported. Visceral / skeletal abnormalities were uncommon.

SRRM2 encodes serine/arginine repetitive matrix protein 2 (or SRm300), a nuclear ubiquitous protein forming a complex with the protein encoded by SRRM1 (SRm160). As the authors summarize this complex is one of the main catalytic components of the spliceosome having a role in pre-mRNA maturation.

12 subjects harbored frameshift variants, 8 nonsense while 2 further ones had microdeletions (66-270kb) spanning - but not limited to - SRRM2 (other genes not predicted to be haploinsufficient). The gene has a pLI in gnomAD of 1 (o/e = 0.06) while it appears to be tolerant to missense variation (z-score of -6.28 / o/e = 1.43). With the exception of the 2 subjects harboring a microdeletion, all were investigated with singleton/trio ES with no other candidate variants.

Variants occurred de novo in 19/22. Mosaicism (in an asymptomatic parent) was suspected based on the reads in one case. One individual had inherited the variant (parent with DD). Segregation analyses was not possible in one case.

While one variant lied in ex2 (of 15) all others were in the large ex11 (encoding ~2000 of the 2752 total residues based on the schema provided / NM_016333.4), all predicted to lead to NMD.

There are no studies for pathogenesis of the disorder or the underlying effect of variants. Animal models not discussed.

The authors do a comparison with other 'spliceosomopathies', e.g. due to variants in SF3B4 or EFTUD2, where DD/ID can be a feature although these disorders have also prominent skeletal features.

Previously, as the authors note, the study by Kaplanis et al (2020 - PMID: 33057194) integrating exome sequence data from ~31,000 parent-offspring trios of individuals with developmental disorders had identified SRRM2 among 28 genes significantly enriched in LoF variants. [ The present study possibly includes individuals from the aforementioned cohort, e.g. from Radboudumc ].; to: Recent report of 22 unrelated individuals with nonsense / frameshift variants or microdeletions of SRRM2. DD was a universal feature, with ID present in some affected individuals (16/20 - in all cases mild). Note possible 'overlap' with the study by Kaplanis et al / DDD study cited in the previous review by Prof. Z. Stark.

The gene is not intolerant to missense variation (z-score of -6.28) and eventual contribution of missense variants is not known. While SRRM2 is known to encode a splicing factor promoting interaction between mRNA and the spliceosome catalytic machinery (discussed below) molecular and functional studies are required to characterize the pathogenesis of the disorder.

There is currently no SRRM2-related phenotype in OMIM. SRRM2 is included in the DD panel of G2P [confidence : definitive, SRRM2-related developmental disorder (monoallelic), cited : Kaplanis et al / DDD]. In PanelApp Australia SRRM2 has amber rating in the ID panel (based on the study by Kaplanis et al / DDD).

Consider inclusion with green rating (several individuals/families/variants - rather consistent phenotype) or amber rating (as for pathogenesis / also DD universal feature, ID observed in most but not all affected individuals, when present always mild).

-----

Cuinat et al. (2022 - PMID: 35567594) report on 22 individuals with LoF variants in SRRM2.

All subjects had DD (22/22) predominantly affecting language acquisition (16/19) while motor delay was less common. ID was present in 16/20 (in all cases mild) of the individuals with available neurocognitive evaluation. Some individuals displayed autistic features (9/22) although others had a friendly - in some cases excessively - sociable personality (8/22). Other features included hypotonia in some, growth abnormalities (12/22 overweight, 7/22 with obesity, 4/22 tall stature). Morphological features incl. facial (20/22 - e.g. deep-set eyes, bulbous nasal tip or smooth philtrum) or small hands and feet (6/22) were also reported. Visceral / skeletal abnormalities were uncommon.

SRRM2 encodes serine/arginine repetitive matrix protein 2 (or SRm300), a nuclear ubiquitous protein forming a complex with the protein encoded by SRRM1 (SRm160). As the authors summarize this complex is one of the main catalytic components of the spliceosome having a role in pre-mRNA maturation.

12 subjects harbored frameshift variants, 8 nonsense while 2 further ones had microdeletions (66-270kb) spanning - but not limited to - SRRM2 (other genes not predicted to be haploinsufficient). The gene has a pLI in gnomAD of 1 (o/e = 0.06) while it appears to be tolerant to missense variation (z-score of -6.28 / o/e = 1.43). With the exception of the 2 subjects harboring a microdeletion, all were investigated with singleton/trio ES with no other candidate variants.

Variants occurred de novo in 19/22. Mosaicism (in an asymptomatic parent) was suspected based on the reads in one case. One individual had inherited the variant (parent with DD). Segregation analyses was not possible in one case.

While one variant lied in ex2 (of 15) all others were in the large ex11 (encoding ~2000 of the 2752 total residues based on the schema provided / NM_016333.4), all predicted to lead to NMD.

There are no studies for pathogenesis of the disorder or the underlying effect of variants. Animal models not discussed.

The authors do a comparison with other 'spliceosomopathies', e.g. due to variants in SF3B4 or EFTUD2, where DD/ID can be a feature although these disorders have also prominent skeletal features.

Previously, as the authors note, the study by Kaplanis et al (2020 - PMID: 33057194) integrating exome sequence data from ~31,000 parent-offspring trios of individuals with developmental disorders had identified SRRM2 among 28 genes significantly enriched in LoF variants. [ The present study possibly includes individuals from the aforementioned cohort, e.g. from Radboudumc ].
Intellectual disability - microarray and sequencing v3.1561 DNAH14 Konstantinos Varvagiannis gene: DNAH14 was added
gene: DNAH14 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DNAH14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNAH14 were set to 35438214
Penetrance for gene: DNAH14 were set to unknown
Review for gene: DNAH14 was set to RED
Added comment: Li et al (2022 - PMID: 35438214) describe 3 individuals harboring biallelic DNAH14 variants. In addition the authors perform a review of cases previously published in the literature.

The reported phenotype does not appear to be very consistent or specific (seizures with highly variable age of onset with or without DD / cognitive delay). Comparison with previously reported subjects (not further reviewed) - discussed in text and appearing mixed in table 1 - does not seem to support an overlapping phenotype.

The authors comment that DNAH14 encodes a heavy chain of axonemal dyneins. Little evidence is provided to support the role of the gene in the pathogenesis of the disorder and pathogenicity of the variants (ultra-rare and predicted in silico to be deleterious).
Sources: Literature
Intellectual disability - microarray and sequencing v3.1561 DALRD3 Konstantinos Varvagiannis changed review comment from: Biallelic pathogenic DALRD3 variants cause ?Developmental and epileptic encephalopathy 86 (# 618910).

Lentini et al (2020 - PMID: 32427860) report 2 sibs born to first cousin parents, homozygous for a DALRD3 pathogenic variant.

Both exhibited hypotonia, severe global DD and epilepsy (onset of seizures at the age 6-7m, poorly controlled by AEDs in one) corresponding overall to an developmental and epileptic encephalopathy. The authors reported subtle dysmorphic features. Other findings included GI concerns (in both) with microcephaly, CHD or renal anomalies in the younger.

WES guided by autozygome analysis revealed homozygosity for a DALRD3 stopgain variant (NM_001009996.3:c.1251C>A/pTyr417*) with Sanger sequencing confirming status of the children and carrier state of the parents.

DALRD3 encodes DALR anticodon-binding domain-containing protein 3. A DALR

It's DALR anticodon-binding domain is similar to those found in arginyl-tRNA synthetases RARS1/2.

As the authors demonstrate, and (better) summarized in OMIM, its product is a tRNA-binding protein that interacts with METTL2 to facilitate 3-methylcytosine (m3C) modification - by METTL2 - at position 32 of the anticodon loop in specific arginine tRNAs, namely tRNA-Arg-UCU and tRNA-Arg-CCU. In particular, DALRD3 seems to serve as discrimination factor required for recognition of these specific tRNAs.

In addition to DALRD3, a DALR anticodon-binding domain is also found in arginyl-tRNA synthetases (the cytoplasmic RARS1, and mitochondrial RARS2).

Given the variant type observed, predicting truncation of the protein and/or NMD, in LCLs from the 2 sibs (and comparison with controls) the authors demonstrated that the levels of full-length DALRD3 were decreased in cell lysates, with severe reduction (/loss) of m3C modification of the specific arginine tRNAs, which was not observed for other tRNAs (eg. tRNA-Ser-UGA) or controls. These findings were suggestive of c.1251C>A / pTyr417* being a partial LoF allele.

As the authors discuss, defects in tRNA modification have been associated with numerous human - among others neurological and neurodevelopmental - disorders (cited PMID: 30529455, table 1 of this review summarizing these incl. ADAT3-, PUS3-, TRMT1- related NDDs, etc).

Consider inclusion in the current panel with amber rating.
Sources: Literature; to: Biallelic pathogenic DALRD3 variants cause ?Developmental and epileptic encephalopathy 86 (# 618910).

Lentini et al (2020 - PMID: 32427860) report 2 sibs born to first cousin parents, homozygous for a DALRD3 pathogenic variant.

Both exhibited hypotonia, severe global DD and epilepsy (onset of seizures at the age 6-7m, poorly controlled by AEDs in one) corresponding overall to an developmental and epileptic encephalopathy. The authors reported subtle dysmorphic features. Other findings included GI concerns (in both) with microcephaly, CHD or renal anomalies in the younger.

WES in both followed by autozygome analysis revealed homozygosity for a DALRD3 stopgain variant (NM_001009996.3:c.1251C>A/pTyr417*) with Sanger sequencing confirming status of the children and carrier state of the parents.

DALRD3 encodes DALR anticodon-binding domain-containing protein 3. A DALR

As the authors demonstrate, and (better) summarized in OMIM, its product is a tRNA-binding protein that interacts with METTL2 to facilitate 3-methylcytosine (m3C) modification - by METTL2 - at position 32 of the anticodon loop in specific arginine tRNAs, namely tRNA-Arg-UCU and tRNA-Arg-CCU. In particular, DALRD3 seems to serve as discrimination factor required for recognition of these specific tRNAs.

In addition to DALRD3, a DALR anticodon-binding domain is also found in arginyl-tRNA synthetases (the cytoplasmic RARS1, and mitochondrial RARS2).

Given the variant type observed, predicting truncation of the protein and/or NMD, in LCLs from the 2 sibs (and comparison with controls) the authors demonstrated that the levels of full-length DALRD3 were decreased in cell lysates, with severe reduction (/loss) of m3C modification of the specific arginine tRNAs, which was not observed for other tRNAs (eg. tRNA-Ser-UGA) or controls. These findings were suggestive of c.1251C>A / pTyr417* being a partial LoF allele.

As the authors discuss, defects in tRNA modification have been associated with numerous human - among others neurological and neurodevelopmental - disorders (cited PMID: 30529455, table 1 of this review summarizing these incl. ADAT3-, PUS3-, TRMT1- related NDDs, etc).

Consider inclusion in the current panel with amber rating.

Sources: Literature
Intellectual disability - microarray and sequencing v3.1561 DALRD3 Konstantinos Varvagiannis gene: DALRD3 was added
gene: DALRD3 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DALRD3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DALRD3 were set to 32427860
Phenotypes for gene: DALRD3 were set to ?Developmental and epileptic encephalopathy 86, # 618910
Penetrance for gene: DALRD3 were set to Complete
Review for gene: DALRD3 was set to AMBER
Added comment: Biallelic pathogenic DALRD3 variants cause ?Developmental and epileptic encephalopathy 86 (# 618910).

Lentini et al (2020 - PMID: 32427860) report 2 sibs born to first cousin parents, homozygous for a DALRD3 pathogenic variant.

Both exhibited hypotonia, severe global DD and epilepsy (onset of seizures at the age 6-7m, poorly controlled by AEDs in one) corresponding overall to an developmental and epileptic encephalopathy. The authors reported subtle dysmorphic features. Other findings included GI concerns (in both) with microcephaly, CHD or renal anomalies in the younger.

WES guided by autozygome analysis revealed homozygosity for a DALRD3 stopgain variant (NM_001009996.3:c.1251C>A/pTyr417*) with Sanger sequencing confirming status of the children and carrier state of the parents.

DALRD3 encodes DALR anticodon-binding domain-containing protein 3. A DALR

It's DALR anticodon-binding domain is similar to those found in arginyl-tRNA synthetases RARS1/2.

As the authors demonstrate, and (better) summarized in OMIM, its product is a tRNA-binding protein that interacts with METTL2 to facilitate 3-methylcytosine (m3C) modification - by METTL2 - at position 32 of the anticodon loop in specific arginine tRNAs, namely tRNA-Arg-UCU and tRNA-Arg-CCU. In particular, DALRD3 seems to serve as discrimination factor required for recognition of these specific tRNAs.

In addition to DALRD3, a DALR anticodon-binding domain is also found in arginyl-tRNA synthetases (the cytoplasmic RARS1, and mitochondrial RARS2).

Given the variant type observed, predicting truncation of the protein and/or NMD, in LCLs from the 2 sibs (and comparison with controls) the authors demonstrated that the levels of full-length DALRD3 were decreased in cell lysates, with severe reduction (/loss) of m3C modification of the specific arginine tRNAs, which was not observed for other tRNAs (eg. tRNA-Ser-UGA) or controls. These findings were suggestive of c.1251C>A / pTyr417* being a partial LoF allele.

As the authors discuss, defects in tRNA modification have been associated with numerous human - among others neurological and neurodevelopmental - disorders (cited PMID: 30529455, table 1 of this review summarizing these incl. ADAT3-, PUS3-, TRMT1- related NDDs, etc).

Consider inclusion in the current panel with amber rating.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1561 FBXO28 Konstantinos Varvagiannis gene: FBXO28 was added
gene: FBXO28 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: FBXO28 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FBXO28 were set to 30160831; 33280099
Phenotypes for gene: FBXO28 were set to Developmental and epileptic encephalopathy 100 (# 619777)
Penetrance for gene: FBXO28 were set to unknown
Review for gene: FBXO28 was set to GREEN
Added comment: Heterozygous pathogenic FBXO28 variants cause Developmental and epileptic encephalopathy 100 (# 619777).

At least 10 individuals with monoallelic missense / truncating FBXO28 variants have been reported. The subject with de novo frameshift variant initially reported by Balak et al (2018 - PMID:30160831) was included with additional clinical details in a recent report along with 9 further individuals (Schneider et al, 2021 - PMID: 33280099).

The phenotype corresponds to a developmental and epileptic encephalopathy with severe/profound ID. As discussed by Schneider et al, all individuals had DD prior to seizure onset which occurred at a median age of 22.5 months (range: 8m - 5y). The authors noted that missense variants may be associated with a milder phenotype (e.g. seizures occurred at the age of 4-5 years in 3 individuals).

Given these, FBXO28 appears to be relevant for inclusion in the current panel, with investigations prior to seizure onset.

As in the summary by Schneider et al, the gene encodes F-box only protein 28, a ubiquitin ligase promoting ubiquitination and degradation of phosphorylated proteins.

While FBXO28 has been suggested to have a critical role in 1q41q42 deletions (most spanning also WDR26) the authors note that a mechanism different than haploinsufficiency may underly FBXO28 encephalopathy.

Importantly, all 5 truncating variants reported (and 2/4 missense ones) occurred in the last exon, making these variants less susceptible to NMD. 2 other (of the 4) missense variants clustered in the F-box domain, which the authors hypothesize may correspond to a second pathogenic region.

7/9 variants arose de novo while 2 individuals had inherited a missense and a stopgain variant from mosaic unaffected parents (2.5% and 6%).

A comparison of the FBXO28-associated phenotype with the respective of 1q41q42 deletions and WDR26-related NDD is also made.

Consider inclusion in the ID panel with green (or amber) rating. Please consider inclusion in other possibly relevant panels (e.g. microcephaly (4/10), movement disorders, etc).
Sources: Literature
Intellectual disability - microarray and sequencing v3.1556 FBXW7 Konstantinos Varvagiannis gene: FBXW7 was added
gene: FBXW7 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: FBXW7 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FBXW7 were set to 33057194; 35395208; 30885698; 26482194; 19963109; 20332316
Phenotypes for gene: FBXW7 were set to Neurodevelopmental abnormality; Global developmental delay; Intellectual disability; Macrocephaly; Microcephaly; Abnormality of brain morphology; Abnormality of the corpus callosum; Abnormality of the cerebellum; Abnormality of the cardiovascular system; Seizures; Strabismus; Abnormality of the palate
Penetrance for gene: FBXW7 were set to unknown
Review for gene: FBXW7 was set to AMBER
Added comment: While Kaplanis et al (2020 - Ref1), identified FBXW7 among 285 genes significantly associated with developmental disorders, a recent study by Stephenson et al (2022 - Ref2) describes the neurodevelopmental phenotype of 35 individuals making this gene relevant to the current panel. There are previous reports of dn/inh germline variants in individuals (likely 7) with tumor predisposition although a neurodevelopmental phenotype was not reported in most cases.

There is currently no FBXW7-related phenotype in OMIM.

The gene is included in the DD panel of G2P [associated with: FBXW7-related developmental disorder (monoallelic), confidence: definitive, citing the study by Kaplanis et al]. SysID lists FBXW7 among the candidate ID genes (same Ref.). The gene has a green rating for ID in PanelApp Australia (VCGS participating in the recent publication).

Consider inclusion with amber/green rating. Also consider inclusion in other panels that may be relevant(macro/microcephaly, seizures, CHD, corpus callosum / cerebellar abnormalities, cleft palate, WT, etc).

[1]------------
Kaplanis et al (2020 - PMID: 33057194), by combining exome data from 31,058 parent offspring trios from the DDD study, Radboudumc and GeneDx, identified 285 genes significantly associated with developmental disorders, 28 of which (incl. FBXW7) not previously robustly associated with these disorders.

[2]------------
Stephenson et al (2022 - PMID: 35395208) provide clinical information on 35 individuals harboring germline monoallelic FBXW7 variants or chromosomal deletions spanning this gene.

The phenotype corresponded to a phenotypically variable NDD characterized by hypotonia (in about 2/3), neurodevelopmental abnormality (34/35 - as discussed later), seizures (8/35), abnormal brain morphology (13/17 - in 7/17 abnormal CC, in 5/17 abn. cerebellum, etc), head circumference (macrocephaly in 10/35, microcephaly in 2/35). Additional features included abnormal palate or uvula morphology (10/35 - cleft palate in 3 from 2 families while 1 individual from a 3rd family had bifid uvula) or abnormal heart morphology (11/35), ophthalmologic features (e.g. strabismus in 5/35) or hearing impairment (2/35). There was no recognizable gestalt (deeply set eyes with upper eyelid fullness in 9/35).

As for the DD/ID this ranged from borderline to severe, characterized as mild-moderate in 27/35, severe in 3/35. One individual did not present neurodevelopmental abnormality 1/35.

FBXW7 encodes F-box and WD40 domain protein 7 which is part of the SCF E3 ligase complex (SKP1/CUL1/F-box protein) exerting a role of recognition and binding of target proteins for degradation by the ubiquitin proteasome system. In this way FBWX7 participates in regulating a network of proteins involved in cell division, growth, differentiation (as summarized by Roversi et al - Ref2).

Most individuals were investigated by trio-WES/WGS (few with singleton WES or CMA only). 28 germline FBXW7 variants were identified incl. missense (N=21), pLoF (predicted or not to undergo NMD) and 2 deletions encompassing but not limited to FBXW7.

Additional SNVs/CNVs (e.g. an inh intragenic DPP6 dup in one individual (#9) with deletion, other de novo 4q CNVs (#10), an inh 22q spanning partially an ISCA TS region, a CACNA1A and KMT2D SNV, etc) were reported in few individuals.

Most variants arose dn (N=30) with two individuals displaying mosaicism (2/30) and three individuals having inherited the variant from their affected parent. CNVs had occurred dn.

3 missense SNVs were recurrent in unrelated individuals.

All variants identified affected all FBXW7 isoforms.

As the authors comment missense variants clustered at the C-terminal half of the protein with most (16/21) occurring within the WD40 domain. [The N-terminal part commented in the literature to affect localization].

The crystal structure of FBXW7 and SKP1 complex has been determined with CYCLIN E1/DISC1 as substrates, and in silico modeling revealed that all missense variants aligned with residues required for this interaction, or adjacent ones.

All were absent from gnomAD, while missense variants from gnomAD (N=78) were not predicted have significant effect on the binding affinity.

Variant studies revealed that most missense variants (6/7 tested - Arg689Gln being the exception) are unlikely to cause protein instability or degradation in vivo.

Co-expression of these missense variants with CYCLIN E1 / E2, known FBXW7 substrates revealed that variants were less efficient at degrading the substrate with variants in the WD40 domain having greater impact (in some cases E1 / E2 - specific).

Elav-Gal4 mediated neuronal knockdown of the Drosophila ortholog archipelago (ago) using 2 RNAi-s with different efficiency was shown to affect learning or compromise neuronal function (also related to the level of knockdown).

The authors summarize results from animal models for the role of this gene in development and the nervous system.

KO mice die in utero at E10.5 manifesting abn. of hematopoietic or vascular development and heart-chamber maturation(*). Some htz knock-in for human cancer variants, display perinatal lethality, abn lung, cleft palate (30%)(*),etc. Conditional gut specific deletion results in impaired differentiation of intestinal goblet cells (*)(constipation in 16/35 in cohort). KO limited to CNS and PNS results in defective sucking and morphological brain abnormalities. Haploinsufficiency in the nervous system was associated with impaired differentiation of neural stem cells (possibly through a Notch-mediated mechanism). KO in Schwann cells of the peripheral nervous system resulted in enhanced myelination.

Excessive oligodendrocyte cells and hypermyelination (as a result of elevated Notch & mTOR signaling) are observed in homozygous mutant zebrafish or after morpholino-mediated fbxw7 knockdown.

Overall, the authors propose haploinsufficiency or loss-of-function as the underlying mechanism.

Finally, as the authors comment, FBXW7 is a tumor suppressor among the most commonly mutated genes in human cancer (3.5%). Germline variants have been previously reported in individuals with cancer (Wilms tumor, rhabdoid, etc - most summarized below). However, none of the 35 individuals in this cohort (oldest 44 y.o.) had any history of cancer.

Reports of individuals with germline variants causing (monoallelic) disruption of FBXW7 - cases without DD/ID:

[3]------------
Mahamdallie et al (2019 - PMID: 30885698) investigated with WES a cohort of 890 individuals with Wilms tumor (799 non-familial disease, 91 from WT pedigrees). In this context they identified 4 individuals having developed WT (ages: 28-76m) with FBXW7 dn or inherited LoF variants (710G>A / p.Trp237* dn - 1972C>T / p.Arg658* - inh:NA, 1017_1021del5, 670C>T - paternal / p.Arg224* inh:NA - RefSeq not provided). One additional individual with a missense variant (1753A>T / p.Ser585Cys - dn) had developed rhabdoid tumor. While the authors mentioned additional features for other subjects in their cohort, among the 5 individuals with FBXW7 variants, only one had hypotonia (ID_0592) and another (ID_7520) had two febrile convulsions.

[4]------------
Roversi et al (2015 - PMID: 26482194) described the phenotype of a 34 y.o. female with syndromic presentation (macrocephaly, nephrotic syndrome due to FSGS, Hodgkin's lymphoma, Wilms tumor, ovarian cystadenoma, breast carcinoma) harboring a 157 kb deletion of 4q31.3.

Eventual DD/ID was not reported despite detailed clinical description.

The deletion spanned almost the entire FBXW7 gene and a pseudogene (hg19 - chr4:153205202-153362047). The authors provided evidence that the del affected the maternal allele as dn event (maternal mosaicism excluded). Expression of FBXW7 in patient-derived EBV lymphoblastoid cell line revealed decreased levels of expression compared to controls. At somatic level, the authors looked for eventual 2nd hit in tumor tissue (which was not the case) while they demonstrated decreased FBXW7 expression in a WT sample compared to normal renal tissue. Previously, variants in other genes candidate for the phenotype were ruled out (Sanger & MLPA for TP53, BRCA1/2, PALB2, WT1, 11p15 MS-MLPA, std karyotype).

[5]------------
Kuiper et al (2015 - PMID: 19963109), in a 58 y.o. patient with recurrence of RCC, identified a constitutional translocation [t(3;4)(q21;q31)]. Using long-range PCR they defined the breakpoints at 3q21.3 (128379059 - hg18) between the PLXNA1 and C3orf56 genes while the chr4 breakpoint was located within the second intron of FBXW7 (pos. 153500813 - hg18). There were no additional phenotypes reported.

[6]------------
Williams et al (2010 - PMID: 20332316) reported a patient with WT harboring germline variants in WT1 and FBXW7. While the phenotype was sufficiently explained by a germline stopgain WT1 variant with a frameshift WT1 variant (as 2nd hit) confined to the tumor, the authors identified a germline in-frame FBXW7 insertion in the same individual (c.45_46insCCT / p.Thr15_Gly16insPro - RefS : NA) [if correct corresponding to: https://gnomad.broadinstitute.org/variant/4-153332910-C-CAGG - 345/281696 alleles in gnomAD].
Sources: Literature
Intellectual disability - microarray and sequencing v3.1544 DTYMK Konstantinos Varvagiannis gene: DTYMK was added
gene: DTYMK was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DTYMK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DTYMK were set to Global developmental delay; Intellectual disability; Microcephaly; Seizures; Global brain atrophy; Cardiorespiratory arrest
Phenotypes for gene: DTYMK were set to 31271740; 34918187; 35346037
Penetrance for gene: DTYMK were set to Complete
Review for gene: DTYMK was set to GREEN
Added comment: 4 individuals (from 3 families) harboring biallelic DTYMK pathogenic variants have been reported.

Consider inclusion in the current panel with green rating given consistent and relevant phenotype and evidence provided to date [effect of variants (LoF), pathogenesis, similar phenotypes in zebrafish model, etc].

Relevant studies are summarized below.
----
Lam et al (2019 - PMID: 31271740) described two siblings aged 25m and 7y, harboring biallelic DTYMK variants.

The phenotype consisted of hypotonia, congenital microcephaly, DD, severe ID. Other shared features included raised serum lactate, pyruvate and alanine. The phenotype was more pronounced in the younger one (epilepticus during febrile illness, epilepsy on multiple anti-convulsants, evidence of regression, etc). Brain MRI revealed marked cerebral atrophy among the findings while a lactate peak was present in spectroscopy. The elder brother developed an episode of sudden onset coma with respiratory failure at the age of 7y.

Quartet WES identified compound heterozygosity for a fs and a missense DTYMK variant (NM_012145.3:c.287_320del / p.Asp96Valfs*8 - c.295G>A / p.Ala99Thr). There were no additional findings. Previous genetic panel analysis for epilepsy was unremarkable for the 1st sib.

There are two pathways for synthesis of dNTPs, the de novo pathway operating in the cytosol only and the salvage operating in both cytosol and mitochondria. DTYMK encodes (deoxy)thymidylate kinase which catalyzes conversion (phosphorylation) of dTMP to dTDP - a step right after convergence of both pathways - in the dTTP synthesis pathway.

Mutations in TK2, an enzyme phosphorylating thymidine in mitochondria to dTMP have been associated with mitochondrial DNA depletion syndrome (MDDS).

Given this and as the 2 sibs had raised serum lactate and pyruvate, the authors performed in silico analyses to calculate mtDNA/nDNA ratio dividing the respective read depths for mitochondrial and nuclear DNA obtained from WGS data of the two sibs (blood).

This ratio was shown to be reduced in the more severely affected sib (65.5% of control) although this was not the case for the mildly affected brother (114.6%). As a control a non-MDDS mitochondrial cytopathy sample (corresponding to m.8993T>G) was used. The respective ratio which was calculated for a known POLG-related MDDS case was 15.6%.
----
Vanoevelen et al (2022 - PMID: 34918187) describe two unrelated children with hypotonia, absence of developmental progress, microcephaly, seizures (recurrent febrile seizures/myoclonic jerks). Severe cerebral atrophy (with unaffected cerebellum) was observed upon brain imaging. Other findings included puffy body/extremities. Both had complications following respiratory illness leading to demise. CNS pathology in the 1st individual revealed massive neuronal dropout, with sparing of dentate nucleus and brainstem.

CMA in both cases was normal. This was also the case for extensive metabolic investigations (which provided no evidence of eventual mitochondrial dysfunction).

WES revealed compound heterozygosity for 2 missense variants in the first individual (NM_012145.3:c.382G>A - p.Asp128Asn and c.242C>T - p.Pro81Leu). The second individual, born to consanguineous parents, was homozygous for c.242C>T / p.Pro81Leu.

In silico predictions varied although each variant were (mostly) suggestive of a deleterious effect.

Variants were both ultrarare without homozygotes in ExAC,.

The authors generated a dtymk ko zebrafish model (hmz for a frameshift variant). Zebrafish exhibited markedly smaller eyes and pericardiac edema (3dpf-), twitching movements somewhat reminiscent of epilepsy (at 3dpf), prominent edema of brain and intestine. Head size was significantly smaller at a timepoint prior to brain edema (also after correction for length). Histology provided evidence of empty spaces in brain, suggestive of neurodegeneration, with high amounts of apoptotic cells.

dTMPK activity was measured in zebrafish (at 5dpf) as well as in fibroblasts from one individual and in both cases, it was barely detectable and significantly lower compared to wt/htz zebrafish or to the activity in fibroblasts from the parents of the individual tested.

In fibroblasts from the same individual with comparison to his parents, the authors demonstrated that DNA replication was impaired (using pulse-EdU staining to quantify cells in S-phase).

Assessment of cell proliferation in the brain of dtymk ko zebrafish using phospo-Ser10-Histone H3 (pH3) staining was suggestive of severe proliferation defects in forebrain.

Impaired biosynthesis of nucleotides for DNA synthesis/repair would be predicted to result in nucleotide pool imbalance, leading to incorporation of ribonucleotides in genomic DNA with - in turn - impairment of DNA replication and genomic instability (sensitivity to strand breakage).

In line with this, genomic DNA of ko zebrafish following alkaline hydrolysis and alkaline gel electrophoresis was shown to migrate at lower position and to be more fragmented indicating increased sensitivity (due to incorporation of ribonucleotides).

Visualization of DNA breakage by γH2AX staining, following UV-irradiation of zebrafish embryos revealed persistence of elevated γH2AX levels and DNA damage response signaling, interpreted as increase in unrepaired DNA breaks.

mtDNA copy numbers in fibroblasts from the affected individual was somewhat but not significantly lower compared to his parents. Importantly, the copy numbers were similar to controls (N=5) which overall does not support mtDNA depletion as a consequence of DTYMK deficiency.

Integrity of mtDNA did not appear to be compromised , with the mitochondrial genome migrating at the expected length of 16,5 kb with no indications of mtDNA deletions for both affected individual and his parents.

Activity of the mitochondrial respiratory complexes I-V in fibroblasts from the affected individual was comparable to that of his parents.

Overall, there was no evidence for mtDNA depletion (although not studied in muscle biopsy) while functional studies failed to demonstrate mitochondrial dysfunction.

The authors discuss other disorders of impaired dTTP metabolism due to mutations in TYMP, RRM2B or CAD.
------
In a recent study using zebrafish model, Hu Frisk et al (2022 - PMID: 35346037) further demonstrate that Dtymk is essential for neurodevelopment providing evidence for expression of a compensatory thymidylate kinase-like enzyme at later stages of development (explaining survival of ko dtymk zebrafish despite the central role of this enzyme in dTTP generation). [Not further reviewed]
Sources: Literature
Intellectual disability - microarray and sequencing v3.1520 PAN2 Konstantinos Varvagiannis gene: PAN2 was added
gene: PAN2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PAN2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PAN2 were set to 29620724; https://doi.org/10.1038/s41431-022-01077-y
Phenotypes for gene: PAN2 were set to Global developmental delay; Intellectual disability; Sensorineural hearing impairment; Abnormality of the genitourinary system; Abnormality of the cardiovascular system; Abnormality of blood and blood-forming tissues; EEG abnormality; Seizures; Anorectal anomaly; Abnormality of the skeletal system; Abnormality of the eye; Abnormality of head or neck
Penetrance for gene: PAN2 were set to Complete
Review for gene: PAN2 was set to AMBER
Added comment: 1.
Maddirevula et al (2018 - PMID: 29620724) first reported on the phenotype associated with biallelic pathogenic variants in PAN2.

This concerned a male (15DG2222) born to consanguineous parents and exhibiting MCA, dysmorphic features and global DD (age of 34 m). Features incl. imperforate anus, metopic craniosynostosis, scoliosis, CHD (PFO, PDA, VSD), renal anomalies (duplicated collecting system) and abnormalities of the eye (posterior embryotoxon, maculopathy).

As the other 411 individuals from the cohort, the child had 1st-tier testing genetic testing using a dysmorphology/skeletal dysplasia panel of 296 genes.

Subsequent autozygome analysis (Axiom genotyping platform) was used to identify ROH (authors state "segregating within the family", in pedigree the proband was the single affected person and single child).

WES revealed a PAN2 indel. [NM_001166279.1:c.3162delC / p.(Ser1055Profs*4)].

There were no additional studies.

Role of PAN2 and animal models discussed as below.
---
2.
Reuter et al. (2022 - https://doi.org/10.1038/s41431-022-01077-y) describe the phenotype of 5 additional individuals - from 3 unrelated families (2 consanguineous) - harboring biallelic PAN2 variants. The authors review the phenotype of the previously described case.

Features included DD (6/6), ID (4/5 with relevant age in the mild-moderate range, 1/5 had borderline IF), sensorineural hearing loss (5/6) and incompletely penetrant congenital anomalies of the heart (4/6 - TOF, septal defects, Ao root dilat), urinary malformations (4/6 - hypoplasia/agenesis, anovesical fistula), ophthalmological anomalies (2/6 - Rieger, posterior embryotoxon, etc). EEG anomalies or seizures were noted in 4/6. Craniofacial feat. in >=2/6 included cleft palate/bifid uvula, ptosis, hypertelorism, abn. of the nose, low-set ears, short neck. There was no comprehensive evaluation for skeletal dysplasia despite short stature/skeletal anomalies in multiple individuals. Hematological anomalies were reported in 2, possibly explained by another concurrent diagnosis (of GSD) in one individual.

WGS was performed for 1 individual, and WES for 4 members of the 2nd family and the proband in the 3rd. ROH identified in all 3 families (1 non-consanguineous but from the same region of Italy) are mentioned in the suppl. Sanger sequencing for parents and affected/unaffected sibs was mentioned for the 2 families with solo WGS/WES. One individual had a dual - previously established - diagnosis (of SLC37A4-related GSD) not related to his NDD. There were no other candidate variants except for VUS or variants in 'genes of uncertain significance'.

The majority of mammalian mature mRNAs have polyA tails, added during RNA processing. PAN2 encodes a subunit of the Pan2-Pan3 deadenylation complex which shortens mRNA 3' polyA tails, regulating mRNA stability/translation efficiency.

Specifically Pan2 is the catalytic subunit, while the interaction with Pan3 mediates efficient mRNA binding. Deadenylation in cytoplasm is mostly carried out by the Pan2-Pan3 or Ccr4-Not compexes. While perturbations of mRNA metabolism/decay are established causes of NDD and ID. In particular, monoallelic variants in genes of Ccr4-Not complex (inc. CNOT1/2/3) already causative of NDDs.

All affected individuals were homozygous for pLoF PAN2 variants, namely (NM_001166279.2): c.2335G>T / p.(Glu779*) [Fam1], c.3408dupT / p.(Glu1137*) [Fam2], c.574-2A>G / p.? [Fam3].

Variants were absent from gnomAD (where PAN2 has a pLI:0.94, o/e:0.19).

There were no variant studies performed. The splicing variant is predicted in silico to abolish the splice-acceptor site, with in-frame skippling of ex5 which codes a repeat within the WD40 domain. Previous studies in yeast have shown that this domain is important for sensing the length of the polyA tail, with absence of this domain resulting in impaired deadenylation of 90A tails (similarly to complete Pan2 del) [cited PMID: 31104843].

Overall PAN2 loss-of-function is thought to be the underlying disease mechanism.

Partial functional redundancy of Pan2/Pan3 (initiation of deadenylation) and Ccr4-Not complexes (further shortening of polyA) is speculated to mitigate consequences of PAN2 LoF in humans.

In yeast Pan2Δ, Ccr4Δ and Pan2Δ/Ccr4Δ have been studied with more severe phenotypes in double mutants where ability to shorten mRNA polyA tails was abolished [cited PMID:11239395]. In yeast extracts lacking Pan2p and Pan3p, transcripts were polyadenylated to >90-200 adenosines [cited PMID: 9774670]

Mouse mutants (MGI:1918984) had increased heart weight, increased eosinophil cell number while homozygosity for a stopgain allele (by ENU mutagenesis) was shown to result in embyonic lethality.

Finally, given the presence of thrombocytopenia and anemia in 3 individuals (2 families) as well as the link between mRNA deadenylation and telomere disease, telomere length analyses from WGS data were performed (TelSeq/Expansion Hunter dn), but there was no evidence for telomeric shortening.
---
Currently, there is no PAN2-related phenotype in OMIM/G2P/SysID/PanelApp Australia.
---
Consider inclusion in the ID panel with amber rating [>3 individuals/families/variants, though variant studies not performed (NMD/splicing) and authors of 2nd study recognize possibility of additional/concurrent diagnoses in individuals from consanguineous families, possibility of missed dn variants due to singleton WGS/WES in 2 fam. Also the presumed deadenylation defect not studied to date].

Please consider adding this gene to other panels - eg. for sens. hearing loss (5/6 - 3 fam), urinary tract anomalies (4/6 - 4 fam), congenital (4/6 - 3fam), anorectal malformations (2/6 - 2 families, incl. fistula or imperforate anus), clefting (2/6 - 1 fam), hematological disorders, etc.

For the time being, not added in epilepsy panel as some individuals had only EEG anomalies, few had also clinical seizures not necessarily requiring treatment.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1518 TIAM1 Konstantinos Varvagiannis gene: TIAM1 was added
gene: TIAM1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: TIAM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TIAM1 were set to 35240055; 33328293
Phenotypes for gene: TIAM1 were set to Delayed speech and language development; Global developmental delay; Intellectual disability; Seizures; Behavioral abnormality; Abnormality of the endocrine system; Hypothyroidism; Abnormality of nervous system morphology
Penetrance for gene: TIAM1 were set to Complete
Review for gene: TIAM1 was set to AMBER
Added comment: Lu et al (2022 - PMID: 35240055) describe 5 individuals (from 4 families) with biallelic TIAM1 missense variants.

The phenotype overall corresponded to a neurodevelopmental disorder with DD (5/5), ID (4/4 individuals of relevant age - 3 families), speech delay (5/5), seizures (5/5 - onset: 2m-13y) and behavioral abnormalities (2/2, sibs with autism and ADHD). Several subjects had endocrine symptoms, namely hypothyroidism (N=3 - 2 families), Addison's disease (1) or hypomagnesemia (1). Non-consistent abnormalities were reported in (3/3) subjects who had a brain MRI.

Previous investigations were mentioned for 3 individuals (incl. 2 sibs) and included normal CMA and/or metabolic workup.

Singleton or trio exome sequencing (in one family) revealed biallelic missense TIAM1 variants.

6 different missense variants were reported, all ultra-rare or not present in gnomAD (also o/e:0.2, pLI:0.96), with CADD scores in favor of deleterious effect (NM_001353694.2): c.67C>T/p.Arg23Cys*, c.2584C>T/p.Leu862Phe*, c.983G>T/p.Gly328Val*, c.4640C>A/p.Ala1547Glu, c.1144G>C/p.Gly382Arg, c.4016C>T/p.Ala1339Val.

TIAM1 encodes a RAC1-specific guanine exchange factor (GEF), regulating RAC1 signaling pathways that in turn affect cell shape, migration, adhesion, growth, survival, and polarity, and influence actin cytoskeletal organization, endocytosis, and membrane trafficking. RAC1 signaling plays important role in control of neuronal morphogenesis and neurite outgrowth (based on the summary by Entrez and authors).

TIAM1 is highly expressed in human brain (GTEx).

The authors provide evidence that sif, the Drosophila ortholog, is expressed primarily in neurons of the fly CNS (but not in glia). Using different sif LoF mutant flies they demonstrate that loss of sif impairs viability. Surviving flies exhibited climbing defects and seizure-like behaviors, both significantly rescued upon UAS-sif expression. Neuronal specific sif knockdown resulted in similar phenotypes to ubiquitous knockdown, while glial knockdown did not result in climbing defects.

The semi-lethal phenotype could be fully rescued by expression of the fly sif cDNA, but only partially by human TIAM1 cDNA reference. Upon expression, 3 patient-variants (R23C, L862F, G328V) had variable rescue abilities similar to or lower (R23C) than TIAM1 Ref. TIAM1 Ref and variants could not rescue the neurological phenotypes though. Higher/ectopic expression of sif or TIAM1 Ref was toxic, which was also observed to a lesser extent for variants.

Overall, the evidence provided suggests that the 3 variants tested induce partial LoF.

In a recent study cited (PMID: 33328293), Tiam1 KO mice had simplified dendritic arbors, reduced spine density and diminished excitatory transmission in dentate gyrus. The authors comment that this mouse model presented only subtle behavioral abnormalities which they speculate may be secondary to GEF redundancy (eg. Tiam2).

There is no TIAM1-associated phenotype in OMIM/G2P/SysID. TIAM1 is included in PanelApp Australia in the ID and epilepsy panels with green rating.

Consider inclusion in the current panel with amber rating [As authors discuss: some phenotypic features differed in their small cohort and the contribution of other recessive conditions in 2 consanguineous families cannot be excluded. Also: in fig S1 only status of parents but not of affected/unaffected sibs is specified with the exception of Fam1].
Sources: Literature
Intellectual disability - microarray and sequencing v3.1475 PHF6 Ivone Leong Phenotypes for gene: PHF6 were changed from Borjeson-Forssman-Lehmann syndrome, 301900; BOERJESON-FORSSMAN-LEHMANN SYNDROME (BFLS) to Borjeson-Forssman-Lehmann syndrome, OMIM:301900
Intellectual disability - microarray and sequencing v3.1458 GABRD Arina Puzriakova Added comment: Comment on list classification: There are sufficient unrelated cases to rate this gene as Green at the next GMS panel update. Although all patients presented epilepsy, it is not clear from the case reports whether cognitive impairment was secondary or independent of seizures. For this reason I think its worth including GABRD on this panel as it is plausible that DD may be evident prior to seizure onset (ranging from 4 months to 4 years in report)
Intellectual disability - microarray and sequencing v3.1442 TBP Arina Puzriakova Phenotypes for gene: TBP were changed from Spinocerebellar ataxia 17, 607136; {Parkinson disease, susceptibility to}, 168600 to Spinocerebellar ataxia 17, OMIM:607136
Intellectual disability - microarray and sequencing v3.1415 ATXN2_CAG Arina Puzriakova Phenotypes for STR: ATXN2_CAG were changed from Spinocerebellar ataxia 2 183090 to Spinocerebellar ataxia 2, OMIM:183090; {Amyotrophic lateral sclerosis, susceptibility to, 13}, OMIM:183090; {Parkinson disease, late-onset, susceptibility to}, OMIM:168600
Intellectual disability - microarray and sequencing v3.1412 ATXN2 Arina Puzriakova Phenotypes for gene: ATXN2 were changed from Spinocerebellar ataxia 2 183090; {Amyotrophic lateral sclerosis, susceptibility to, 13} 183090 to Spinocerebellar ataxia 2, OMIM:183090; {Amyotrophic lateral sclerosis, susceptibility to, 13}, OMIM:183090; {Parkinson disease, late-onset, susceptibility to}, OMIM:168600
Intellectual disability - microarray and sequencing v3.1249 MAP1B Arina Puzriakova edited their review of gene: MAP1B: Added comment: MAP1B was flagged by a GLH following identification of some potential cases relating to variants in this gene and predominantly ID phenotypes within 100K data. Although these are pending confirmations (will request update once cases are validated), upon reassessment of MAP1B it was highlighted that inclusion on this panels may still be warranted to increase the likelihood of detecting cases, particularly given that DD/ID is more likely to be observed earlier in the course of disease albeit at varying severities.

For this reason, MAP1B should be promoted to Green status at the next GMS panel review (tagged Q3_21_rating); Changed rating: GREEN
Intellectual disability - microarray and sequencing v3.1244 ALDH3A2 Arina Puzriakova Phenotypes for gene: ALDH3A2 were changed from Sjogren-Larsson syndrome, 270200; SJOEGREN-LARSSON SYNDROME (SLS) to Sjogren-Larsson syndrome, OMIM:270200
Intellectual disability - microarray and sequencing v3.1222 RNF220 Konstantinos Varvagiannis gene: RNF220 was added
gene: RNF220 was added to Intellectual disability. Sources: Literature,Other
Mode of inheritance for gene: RNF220 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNF220 were set to 33964137; 10881263
Phenotypes for gene: RNF220 were set to Leukodystrophy; CNS hypomyelination; Ataxia; Intellectual disability; Sensorineural hearing impairment; Elevated hepatic transaminases; Hepatic fibrosis; Dilated cardiomyopathy; Spastic paraplegia; Dysarthria; Abnormality of the corpus callosum
Penetrance for gene: RNF220 were set to Complete
Review for gene: RNF220 was set to GREEN
Added comment: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal.

Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9).

The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263).

Extensive segregation analyses were carried out including several affected and unaffected members.

RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development

Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc :
*RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS)
*The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions.
*Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome.
*Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2).
*RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1.
*Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt.
*Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies.

There is currently no associated phenotype in OMIM or G2P. SysID includes RNF220 among the current primary ID genes.

Consider inclusion in panels for leukodystrophies, childhood onset ataxia, sensorineural hearing loss, corpus callosum anomalies, cardiomyopathies, hepatopathies, etc in all cases with green rating.
Sources: Literature, Other
Intellectual disability - microarray and sequencing v3.1213 COG4 Arina Puzriakova Added comment: Comment on mode of inheritance: Early developmental delay (speech and motor) can be a feature of Saul-Wilson syndrome (monoallelic inheritance), however cognition is normal. Therefore, the monoallelic form is not pertinent to this panel and the MOI should remain as biallelic only which is associated with CDG-IIj, including psychomotor retardation.
Intellectual disability - microarray and sequencing v3.801 SON Catherine Snow Source: Expert Review Amber was removed from gene: SON
Intellectual disability - microarray and sequencing v3.661 RAP1B Ivone Leong Added comment: Comment on list classification: New gene added by Zornitza Stark (Australian Genomics). This gene is associated with a phenotype in Gene2Phenotype but not OMIM.

PMID: 32627184 describes 2 patients.
36 yo patient of non-consanguineous parents. Had unclear pancytopenia, multiple congenital malformations, mild intellectual disability, endocrine disorders (short stature with growth hormone deficiency), dysmorphism and other features. Parents and sibling unaffected.
13 yo of non-consanguineous parents with thrombocytopenia, multiple congenital anomalies and learning difficulties. He had normal developmental milestones, walk was achieved at 14 months and there was no speech delay. He attended mainstream school with auxiliary help because of learning difficulties with graphism, syntaxic comprehension, logical reasoning and attention deficit. Parents and siblings unaffected.

PMID: 26280580 describes another patient with variant in RAP1B. The clinical features can be found in supplementary table 2. The table lists ID, but doesn't say severity and lists a host of other features including short stature, facial dysmorphism and skeletal findings.

All 3 cases seem to have a very wide spectrum of differing phenotypes and therefore, this gene has been given an Amber rating until further evidence is available.
Intellectual disability - microarray and sequencing v3.658 AAAS Arina Puzriakova Phenotypes for gene: AAAS were changed from Achalasia-addisonianism-alacrimia syndrome 231550 to Achalasia-addisonianism-alacrimia syndrome, OMIM:231550; Triple-A syndrome, MONDO:0009279
Intellectual disability - microarray and sequencing v3.568 DNMT3A Sarah Leigh Phenotypes for gene: DNMT3A were changed from OVERGROWTH SYNDROME WITH INTELLECTUAL DISABILITY to Tatton-Brown-Rahman syndrome OMIM:615879; Heyn-Sproul-Jackson syndrome OMIM:618724; MONDO:0032882
Intellectual disability - microarray and sequencing v3.567 DNMT3A Sarah Leigh Added comment: Comment on mode of pathogenicity: Tatton-Brown-Rahman syndrome 615879 is associated with loss of function variants and Heyn-Sproul-Jackson syndrome OMIM:618724 is associated with gain of function variants.
Intellectual disability - microarray and sequencing v3.500 PRKAR1B Konstantinos Varvagiannis gene: PRKAR1B was added
gene: PRKAR1B was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PRKAR1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKAR1B were set to https://doi.org/10.1101/2020.09.10.20190314; 25414040
Phenotypes for gene: PRKAR1B were set to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure
Penetrance for gene: PRKAR1B were set to unknown
Review for gene: PRKAR1B was set to AMBER
Added comment: Please consider inclusion of this gene with amber rating pending publication of the preprint and/or additional evidence.

Marbach et al. (2020 - medRxiv : https://doi.org/10.1101/2020.09.10.20190314 - last author : C. Schaaf) report 6 unrelated individuals with heterozygous missense PRKAR1B variants.

All presented formal ASD diagnosis (6/6), global developmental delay (6/6) and intellectual disability (all - formal evaluations were lacking though). Additional features included neurologic anomalies (movement disorders : dyspraxia, apraxia, clumsiness in all, with tremor/dystonia or involuntary movements as single occurrences). Three displayed high pain tolerance. Regression in speech was a feature in two. Additional behavior anomalies included ADHD (4-5/6) or aggression (3/6). There was no consistent pattern of malformations, physical anomalies or facial features (with the exception of uplsanted palpebral fissures reported in 4).

3 different missense variants were identified (NM_00116470:c.1003C>T - p.Arg335Trp, c.586G>A - p.Glu196Lys, c.500_501delAAinsTT - p.Gln167Leu) with Arg355Trp being a recurrent one within this cohort (4/6 subjects). A possible splicing effect may apply for the MNV. All variants are absent from gnomAD and the SNVs had CADD scores > 24.

In all cases were parental samples were available (5/6), the variant had occurred as a de novo event.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. As the authors comment, the RIβ subunit is primarily expressed in brain with higher expression in cortex and hypothalamus.

The functional consequences of the variants at cellular level were not studied.

Previous studies have demonstrated that downregulation of RIβ in murine hippocampal cultures, reduced phosphorylation of CREB, a transcription factor involved in long-term memory formation. The authors speculate that a similar effect on cAMP/PKA/CREB cascade may mediate the cognitive effects in humans. RIβ deficient mice also display diminished nociceptive pain, similar to the human phenotype. [Several refs provided].

The authors cite the study by Kaplanis et al (2020 - PMID: 33057194), where in a large sample of 31,058 trio exomes of children with developmental disorders, PRKAR1B was among the genes with significant enrichment for de novo missense variants. [The gene has a pLI score of 0.18 in gnomAD / o/e = 0.26 - so pLoF variants may not be deleterious].

Please note that a specific PRKAR1B variant (NM_002735.2:c.149T>G - p.Leu50Arg) has been previous reported to segregate with a late-onset neurodegenerative disorder characterized by dementia and/or parkinsonism within a large pedigree with 12 affected individuals [Wong et al 2014 - PMID: 25414040].
Sources: Literature
Intellectual disability - microarray and sequencing v3.420 ITFG2 Konstantinos Varvagiannis gene: ITFG2 was added
gene: ITFG2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: ITFG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ITFG2 were set to 28397838; https://doi.org/10.1038/s41525-020-00150-z
Phenotypes for gene: ITFG2 were set to Neurodevelopmental abnormality; Intellectual disability; Developmental regression; Ataxia
Penetrance for gene: ITFG2 were set to Complete
Review for gene: ITFG2 was set to AMBER
Added comment: ITFG2 was suggested to be a candidate gene for autosomal recessive ID in the study by Harripaul et al (2018 - PMID: 28397838). The authors performed microarray and exome sequencing in 192 consanguineous families and identified a homozygous ITGF2 stopgain variant (NM_018463.3:c.472G>T / p.Glu158*) along with 3 additional variants segregating with ID within an investigated family (PK51).

Cheema et al (2020 - https://doi.org/10.1038/s41525-020-00150-z) report briefly on a male, born to consanguineous parents presenting with NDD, seizures, regression and ataxia. There was a similarly affected female sibling. Evaluation of ROH revealed a homozygous ITFG2 nonsense variant [NM_018463.3:c.361C>T / p.(Gln121*)]. Families in this study were investigated by trio WES or WGS.

Evaluation of data of the same lab revealed 3 additional unrelated subjects with overlapping phenotypes, notably NDD and ataxia. These individuals were - each - homozygous for pLoF variants [NM_018463.3:c.848-1G>A; NM_018463.3:c.704dupC, p.(Ala236fs), NM_018463.3:c.1000_1001delAT, p.(Ile334fs)].

As discussed in OMIM, ITFG2 encodes a subunit of the KICSTOR protein complex, having a role in regulating nutrient sensing by MTOR complex-1 (Wolfson et al 2017 - PMID : 28199306).

Please consider inclusion in the ID panel with amber rating, pending further details.
Sources: Literature
Intellectual disability - microarray and sequencing v3.405 NUP214 Eleanor Williams changed review comment from: Associated with {Encephalopathy, acute, infection-induced, susceptibility to, 9} 618426 in OMIM and Gene2Phenotype (probable).

PMID: 31178128 - Fichtman et al 2019 - report on two families one of Palestinian decent, the other Northern European (not Finnish descent). Each had two affected siblings in which neurological decline was seen after febrile events. The older son in family A, exhibited minor developmental delay from infancy. A homozygous missense variant was identified in NUP214 (p.Arg38Cys) in family A and segregated with the disease in available family members. In family B affected sisters were compound heterozygous for a frameshift and a missense variant in NUP214 (p.Pro387Ser and p.Pro525Leufs∗6). Functional studies with fibroblasts from one patient in family A showed a decrease in NUP214 and NUP88 levels compared to controls,

PMID: 30758658 - Shamseldin et al 2019 - describe a multiplex consanguineous family in which four affected members presented with severe neonatal hypotonia, profound global developmental delay, progressive microcephaly and early death. Whole exome sequencing revealed the presence of a novel homozygous missense variant in NUP214, p.D154G.

PMID: 29483668 - Egloff et al 2018 - report a 4-year-old girl presenting with developmental delay, growth retardation and facial dysmorphism. She was found to have a 9q deletion inherited from her healthy mother and a a hemizygous one-base pair deletion in the NUP214 gene inherited from her father. From patient leukocytes it was found that the expression level of the NUP214 transcript was significantly decreased and close to zero in the patient compared to the controls. ; to: Associated with {Encephalopathy, acute, infection-induced, susceptibility to, 9} 618426 in OMIM and Gene2Phenotype (probable).

PMID: 31178128 - Fichtman et al 2019 - report on two families one of Palestinian decent, the other Northern European (not Finnish descent). Each had two affected siblings in which neurological decline was seen after febrile events. The older son in family A, exhibited minor developmental delay from infancy. A homozygous missense variant was identified in NUP214 (p.Arg38Cys) in family A and segregated with the disease in available family members. In family B affected sisters were compound heterozygous for a frameshift and a missense variant in NUP214 (p.Pro387Ser and p.Pro525Leufs∗6). Functional studies with fibroblasts from one patient in family A showed a decrease in NUP214 and NUP88 levels compared to controls,

PMID: 30758658 - Shamseldin et al 2019 - describe a multiplex consanguineous family in which four affected members presented with severe neonatal hypotonia, profound global developmental delay, progressive microcephaly and early death (<2 year old). Whole exome sequencing revealed the presence of a novel homozygous missense variant in NUP214, p.D154G.

PMID: 29483668 - Egloff et al 2018 - report a 4-year-old girl presenting with developmental delay, growth retardation and facial dysmorphism. She was found to have a 9q deletion inherited from her healthy mother and a hemizygous one-base pair deletion in the NUP214 gene inherited from her father. From patient leukocytes it was found that the expression level of the NUP214 transcript was significantly decreased and close to zero in the patient compared to the controls.
Intellectual disability - microarray and sequencing v3.405 NUP214 Eleanor Williams changed review comment from: Associated with {Encephalopathy, acute, infection-induced, susceptibility to, 9} 618426 in OMIM and Gene2Phenotype (probable).

PMID: 31178128 - Fichtman et al 2019 - report on two families. Family A have first-cousin parents of Palestinian descent. The proband exhibited minor developmental delay from infancy, presented with ataxia, mental retardation, and intractable epilepsy and died at 11 years. He suffered deterioration in association with febrile illnesses. His cousin presented at 5.5 months with partially reversible encephalopathy and developmental regression after a febrile illness. Family B were sisters born to non-consanguineous parents of Northern European (non-Finnish) descent. The older sister had nystagmus at 2 months and mild hypotonia, but she was otherwise meeting milestones appropriately . At 15 months of age, she developed a fever that led to a rapid neurological decline, seizures, and abnormal movements. The younger sister presented at 7 months with failure to thrive and hyponatremia but was meeting developmental milestones appropriately. By 24 months of age, she had motor and speech delay, ataxic gait, and occasional very mild head bobbing. In family A a homozygous NUP214 p.Arg38Cys variant segregated with the disease in available family members. In family B the sisters were found to be compound heterozygous for a frameshift and a missense variant in NUP214 (p.Pro387Ser and p.Pro525Leufs∗6).; to: Associated with {Encephalopathy, acute, infection-induced, susceptibility to, 9} 618426 in OMIM and Gene2Phenotype (probable).

PMID: 31178128 - Fichtman et al 2019 - report on two families one of Palestinian decent, the other Northern European (not Finnish descent). Each had two affected siblings in which neurological decline was seen after febrile events. The older son in family A, exhibited minor developmental delay from infancy. A homozygous missense variant was identified in NUP214 (p.Arg38Cys) in family A and segregated with the disease in available family members. In family B affected sisters were compound heterozygous for a frameshift and a missense variant in NUP214 (p.Pro387Ser and p.Pro525Leufs∗6). Functional studies with fibroblasts from one patient in family A showed a decrease in NUP214 and NUP88 levels compared to controls,

PMID: 30758658 - Shamseldin et al 2019 - describe a multiplex consanguineous family in which four affected members presented with severe neonatal hypotonia, profound global developmental delay, progressive microcephaly and early death. Whole exome sequencing revealed the presence of a novel homozygous missense variant in NUP214, p.D154G.

PMID: 29483668 - Egloff et al 2018 - report a 4-year-old girl presenting with developmental delay, growth retardation and facial dysmorphism. She was found to have a 9q deletion inherited from her healthy mother and a a hemizygous one-base pair deletion in the NUP214 gene inherited from her father. From patient leukocytes it was found that the expression level of the NUP214 transcript was significantly decreased and close to zero in the patient compared to the controls.
Intellectual disability - microarray and sequencing v3.362 NHP2 Arina Puzriakova Phenotypes for gene: NHP2 were changed from Dyskeratosis congenita, autosomal recessive 2, 613987 to Dyskeratosis congenita, autosomal recessive 2, 613987; Høyeraal-Hreidarsson syndrome
Intellectual disability - microarray and sequencing v3.255 TAF1C Konstantinos Varvagiannis gene: TAF1C was added
gene: TAF1C was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: TAF1C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TAF1C were set to 32779182
Phenotypes for gene: TAF1C were set to Global developmental delay; Intellectual disability; Spasticity; Strabismus; Seizures; Abnormality of nervous system morphology
Penetrance for gene: TAF1C were set to Complete
Review for gene: TAF1C was set to AMBER
Added comment: Knuutinen et al (2020 - PMID: 32779182) report on 2 individuals from 2 consanguineous families, homozygous for TAF1C missense variants.

Both presented with an early onset neurological phenotype with severe global DD, ID (2/2 - moderate and profound), spasticity (2/2), ophthalmic findings (strabismus 2/2, nystagmus 1/2). Epilepsy, abnormal brain MRI (cerebral and cerebellar atrophy and white matter hyperintensities) as well and additional findings were reported in one (always the same individual).

Following a normal CMA, exome in the first case revealed a homozygous missense SNV (NM_005679.3:c.1165C>T / p.Arg389Cys) supported by in silico predictions. mRNA and protein levels were substantially reduced in fibroblasts from this subject. Only the patient and parents were tested for the variant but not 3 unaffected sibs (fig1).

The second individual was homozygous for another missense variant (p.Arg405Cys) also supported by in silico predictions. The girl was the single affected person within the family with an unaffected sib and parents heterozygous for the variant. Several other unaffected relatives in the extended pedigree were either carriers for this variant or homozygous for the wt allele.

TAF1C encodes the TATA-box binding protein associated factor (TAF) RNA polymerase I subunit.

RNA polymerase I (Pol I) transcribes genes to produce rRNA. For Pol I to initiate transcription, two transcription factors are required : UBF (upstream binding factor encoded by UBTF) and SL1 (selectivity factor 1). The latter is formed by TBP (TATA-binding protein) and 3 Pol I-specific TBP-associated factors (TAFs).

A recurrent de novo missense variant in UBTF (encoding the other Pol I transcription factor) causes a disorder with highly similar features. The specific variant acts through a gain-of-function mechanism (and not by LoF which appears to apply for TAF1C based on expression data).

The authors hypothesize that altered Pol I activity and resulting ribosomal stress could cause the microcephaly and leukodystrophy (both reported in 1 - the same - individual).

As a result, TAF1C may be considered for inclusion in the ID panel with amber rating pending further evidence.
Sources: Literature
Intellectual disability - microarray and sequencing v3.239 FAM50A Konstantinos Varvagiannis gene: FAM50A was added
gene: FAM50A was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: FAM50A was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: FAM50A were set to 32703943
Phenotypes for gene: FAM50A were set to Mental retardation syndrome, X-linked, Armfield type (MIM #300261)
Penetrance for gene: FAM50A were set to unknown
Review for gene: FAM50A was set to GREEN
Added comment: Lee et al (2020 - PMID: 32703943) provide evidence that Armfield X-Linked intellectual disability syndrome is caused by monoallelic FAM50A pathogenic variants. The current review is based only on this reference.

The authors provide clinical details on 6 affected individuals from 5 families.

Features included postnatal growth delay, DD and ID (6/6 - also evident for those without formal IQ assesment), seizures (3/6 from 2 families), prominent forehead with presence of other facial features and variable head circumference (5th to >97th %le), ocular anomalies (5/6 - strabismus/nystagmus/Axenfeld-Rieger), cardiac (3/6 - ASD/Fallot) and genitourinary anomalies (3/6).

In the first of these families (Armfield et al 1999 - PMID: 10398235), linkage analysis followed by additional studies (Sanger, NGS of 718 genes on chrX, X-exome NGS - several refs provided) allowed the identification of a FAM50A variant. Variants in other families were identified by singleton (1 fam) or trio-ES (3 fam).

In affected individuals from 3 families, the variant had occurred de novo. Carrier females in the other families were unaffected (based on pedigrees and/or the original publication). XCI was rather biased in most obligate carrier females from the 1st family (although this ranged from 95:5 to 60:40).

Missense variants were reported in all affected subjects incl. Trp206Gly, Asp255Gly, Asp255Asn (dn), Glu254Gly (dn), Arg273Trp (dn) (NM_004699.3).

Previous studies have demonstrated that FAM50A has ubiquitous expression in human fetal and adult tissues (incl. brain in fetal ones).

Immunostaining suggests a nuclear localization for the protein (NIH/3T3 cells). Comparison of protein levels in LCLs from affected males and controls did not demonstrate significant differences. Protein localization for 3 variants (transfection of COS-7 cells) was shown to be similar to wt.

Complementation studies in zebrafish provided evidence that the identified variants confer partial loss of function (rescue of the morpholino phenotype with co-injection of wt but not mt mRNA). The zebrafish ko model seemed to recapitulate the abnormal development of cephalic structures and was indicative of diminished/defective neurogenesis. Transcriptional dysregulation was demonstrated in zebrafish (altered levels and mis-splicing). Upregulation of spliceosome effectors was demonstrated in ko zebrafish.

Similarly, mRNA expression and splicing defects were demonstrated in LCLs from affected individuals. FAM50A pulldown followed by mass spectrometry in transfected HEK293T cells demonstrated enrichment of binding proteins involved in RNA processing and co-immunoprecipitation assays (transfected U-87 cells) suggested that FAM50A interacts with spliceosome U5 and C-complex proteins.

Overall aberrant spliceosome C-complex function is suggested as the underlying pathogenetic mechanism.

Several other neurodevelopmental syndromes are caused by variants in genes encoding C-complex affiliated proteins (incl. EFTUD2, EIF4A3, THOC2, etc.).

Please consider inclusion in the ID panel with green rating and epilepsy panel with amber (seizures in individuals from 2 families).
Sources: Literature
Intellectual disability - microarray and sequencing v3.223 CHD1 Arina Puzriakova changed review comment from: Gene is associated with Pilarowski-Bjornsson syndrome in OMIM, but not in G2P.

Pilarowski et al (2018) (PMID: 28866611) reported heterozygous missense variants in five individuals (two sibs and three singletons) as the cause of developmental delay, speech apraxia, hypotonia, and facial dysmorphic features. Two variants were confirmed de novo, while segregation for others could not be determined (including the two sibs who were conceived by egg donor). Developmental delay was noted for all participants; however, ID was only reported in the two sibs.; to: Gene is associated with Pilarowski-Bjornsson syndrome in OMIM, but not in G2P.

Pilarowski et al (2018) (PMID: 28866611) reported heterozygous missense variants in five individuals (two sibs and three singletons) as the cause of developmental delay, speech apraxia, hypotonia, and facial dysmorphic features. Two variants were confirmed de novo, while segregation for others could not be determined (including the two sibs who were conceived by egg donor). Developmental delay was noted for all participants; however, ID was only reported in the two sibs. Further insight may be gained from re-evaluation of the two patients in the present study who were too young for a formal neurocognitive evaluation at the time of publication.
Intellectual disability - microarray and sequencing v3.209 LAMB2 Arina Puzriakova reviewed gene: LAMB2: Rating: AMBER; Mode of pathogenicity: None; Publications: 15367484, 17256789; Phenotypes: Pierson syndrome, 609049; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v3.191 KCNN3 Arina Puzriakova changed review comment from: Associated with phenotype in OMIM, and probable gene-disease association in G2P. Bauer et al. (2019) PMID: 31155282 - De novo heterozygous gain-of-function variants identified in three unrelated individuals with ZimmermannLaband syndrome. Mild-moderate ID was reported in a 46-year-old man, while developmental delay was noted for the other two patients: a 4.5-year-old (first words at 2.5 y; attends nursery) and 5.5-year-old girl (limited spoken language; attends school with a personal aide). Additional features include coarse face, gingival hyperplasia, and/or nail hypo- or aplasia. ; to: Associated with phenotype in OMIM, and probable gene-disease association in G2P.

Bauer et al. (2019) PMID: 31155282 - De novo heterozygous gain-of-function variants identified in three unrelated individuals with ZimmermannLaband syndrome. Mild-moderate ID was reported in a 46-year-old man, while developmental delay was noted for the other two patients: a 4.5-year-old (first words at 2.5 y; attends nursery) and 5.5-year-old girl (limited spoken language; attends school with a personal aide). Additional features include coarse face, gingival hyperplasia, and/or nail hypo- or aplasia.
Intellectual disability - microarray and sequencing v3.170 ABCA2 Konstantinos Varvagiannis gene: ABCA2 was added
gene: ABCA2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: ABCA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ABCA2 were set to 30237576; 29302074; 31047799
Phenotypes for gene: ABCA2 were set to Intellectual developmental disorder with poor growth and with or without seizures or ataxia, 618808
Penetrance for gene: ABCA2 were set to Complete
Review for gene: ABCA2 was set to GREEN
Added comment: Biallelic pathogenic ABCA2 variants cause Intellectual developmental disorder with poor growth and with or without seizures or ataxia (MIM 618808).

There are 3 relevant publications (01-07-2020) :
- Maddirevula et al [2019 - PMID: 30237576] described briefly 2 unrelated subjects (16-2987, 16DG0071) both DD and seizures among other manifestations.
- Hu et al [2019 - PMID: 29302074] reported 3 sibs (M8600615 - III:1-3) born to consanguineous parents (M8600615 - III:1-3) with DD/ID (formal confirmation of moderate ID, in those (2) evaluated). One also presented with seizures.
- Aslam and Naz [2019 - PMID: 31047799] provided clinical details on 2 siblings born to consanguineous parents. ID was reported for the older sib but was absent in the younger one. Seizures were not part of the phenotype.

All subjects harbored biallelic pLoF variants.

N.B. : Steinberg et al [2015 - PMID: 25773295], within a cohort of patients with ALS, identified one with biallelic ABCA2 variants. As however Aslam and Naz comment, this person harbored a single pathogenic variant, with a second one rather unlikely to be pathogenic due to high allele frequency.

Overall this gene can be considered for inclusion with green rating in both ID and epilepsy panels (each in >=3 unrelated individuals).
Sources: Literature
Intellectual disability - microarray and sequencing v3.80 COG4 Zornitza Stark reviewed gene: COG4: Rating: GREEN; Mode of pathogenicity: None; Publications: 31949312, 30290151, 19494034, 21185756; Phenotypes: Saul-Wilson syndrome, OMIM #618150, Congenital disorder of glycosylation, type IIj, OMIM #613489; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v3.71 CXorf56 Rebecca Foulger commented on gene: CXorf56: PMID:31822863. Rocha et al., 2019 report on 9 affected individuals (3 unrelated families) with mild to severe ID and variants in CXorf56. In comparison to PMID:29374277, X-linked skewing was seen in both affected females and the unaffected carrier had complete inactivation of the carrier X-chromosome.
Intellectual disability - microarray and sequencing v3.65 PTRHD1 Helen Brittain Added comment: Comment when marking as ready: Further case from personal correspondence. Considered sufficient for a green rating.
Intellectual disability - microarray and sequencing v3.65 PTRHD1 Helen Brittain Phenotypes for gene: PTRHD1 were changed from Intellectual disability; Parkinsonism, Intellectual disability; Parkinsonism to Intellectual disability; Parkinsonism
Intellectual disability - microarray and sequencing v3.23 SCAMP5 Sarah Leigh changed review comment from: Comment on list classification: Not associated with phenotype in OMIM (last edited on 10/06/2014) or in Gen2Phen. Two variants have been identified in three unrelated cases (one monoallelic, one biallelic). Supportive functional studies have been reported.
It would appear that the two variants reported so far in this gene result in differing mode of pathogenicity and phenotypic features. With heterozygous c.538G>T, p.Gly180Trp seeming to have a dominant-negative effect resulting in autistic spectrum disorder, intellectual disability and seizures. While homozygous c.271C>T, p.R91W seems to have a loss of function effect resulting in early onset epilepsy and Parkinson’s disease. This may be due to different functional domains of the mature protein being altered.; to: Comment on list classification: Not associated with phenotype in OMIM (last edited on 10/06/2014) or in Gen2Phen. Two variants have been identified in three unrelated cases (one monoallelic, one biallelic). Supportive functional studies have been reported.
It would appear that the two variants reported so far in this gene result in differing mode of pathogenicity and phenotypic features. With heterozygous c.538G>T, p.Gly180Trp seeming to have a dominant-negative effect resulting in autistic spectrum disorder, intellectual disability and seizures. While homozygous c.271C>T, p.R91W seems to have a loss of function effect resulting in early onset epilepsy and Parkinson’s disease. This may be due to different functional domains of the mature protein being altered.
Based on this evidence, SCAMP5 is rated as Amber, with a Watchlist tag. This status may change if further cases are reported.
Intellectual disability - microarray and sequencing v3.19 SCAMP5 Sarah Leigh Added comment: Comment on mode of pathogenicity: Heterozygous c.538G>T, p.Gly180Trp seeming to have a dominant-negative effect resulting in autistic spectrum disorder, intellectual disability and seizures. While homozygous c.271C>T, p.R91W seems to have a loss of function effect resulting in early onset epilepsy and Parkinson’s disease.
Intellectual disability - microarray and sequencing v3.18 SCAMP5 Sarah Leigh Added comment: Comment on list classification: Not associated with phenotype in OMIM (last edited on 10/06/2014) or in Gen2Phen. Two variants have been identified in three unrelated cases (one monoallelic, one biallelic). Supportive functional studies have been reported.
It would appear that the two variants reported so far in this gene result in differing mode of pathogenicity and phenotypic features. With heterozygous c.538G>T, p.Gly180Trp seeming to have a dominant-negative effect resulting in autistic spectrum disorder, intellectual disability and seizures. While homozygous c.271C>T, p.R91W seems to have a loss of function effect resulting in early onset epilepsy and Parkinson’s disease. This may be due to different functional domains of the mature protein being altered.
Intellectual disability - microarray and sequencing v3.3 NHP2 Zornitza Stark reviewed gene: NHP2: Rating: AMBER; Mode of pathogenicity: None; Publications: 18523010, 31985013; Phenotypes: Dyskeratosis congenita, autosomal recessive 2, MIM# 613987, Høyeraal-Hreidarsson syndrome; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v3.3 TBX22 Zornitza Stark reviewed gene: TBX22: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Abruzzo-Erickson syndrome, MIM# 302905, Cleft palate with ankyloglossia, MIM# 303400; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Intellectual disability - microarray and sequencing v3.0 LAS1L Zornitza Stark reviewed gene: LAS1L: Rating: GREEN; Mode of pathogenicity: None; Publications: 25644381, 25644381; Phenotypes: Wilson-Turner syndrome, MIM# 309585; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females; Current diagnostic: yes
Intellectual disability - microarray and sequencing v3.0 LAMB2 Zornitza Stark gene: LAMB2 was added
gene: LAMB2 was added to Intellectual disability. Sources: Expert list
Mode of inheritance for gene: LAMB2 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: LAMB2 were set to Pierson syndrome, MIM#609049
gene: LAMB2 was marked as current diagnostic
Added comment: Cognitive impairment described in survivors.
Sources: Expert list
Intellectual disability - microarray and sequencing v3.0 CHD1 Zornitza Stark gene: CHD1 was added
gene: CHD1 was added to Intellectual disability. Sources: Expert list
Mode of inheritance for gene: CHD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CHD1 were set to 28866611
Phenotypes for gene: CHD1 were set to Pilarowski-Bjornsson syndrome, MIM#617682
Mode of pathogenicity for gene: CHD1 was set to Other
Review for gene: CHD1 was set to GREEN
gene: CHD1 was marked as current diagnostic
Added comment: Six unrelated individuals with heterozygous variants reported. Possible dominant negative mechanism: reported variants are missense, and an individual with a deletion did not have a neurological phenotype.
Sources: Expert list
Intellectual disability - microarray and sequencing v3.0 PUM1 Konstantinos Varvagiannis commented on gene: PUM1: 5 unrelated individuals with de novo pathogenic PUM1 variants have been reported in the literature. DD (5/5), ID (4/5 - relevant severity to the current panel), seizures (4/4 - absence/tonic-clonic, abnormal EEG) and variable other features (incl. facial dysmorphism, ataxia, cryptorchidism) appear to be part of the phenotype. 9 individuals with deletions spanning PUM1 and proximal genes presented similar features.

[1] PMID: 29474920 - Gennarino et al (2018)
[2] PMID: 30903679 - Bonnemason-Carrere et al (2019)
[3] PMID: 31859446 - Voet et al (2019) [with review of the literature]

SNVs in relevant individuals were identified by exome sequencing and were in all cases de novo.

Arg1147Trp was a recurrent variant reported in 3 unrelated subjects with ID and seizures (Refs 1,2,3 / NM_001020658.1:c.3439C>T). A nonsense variant was reported in an additional one with DD, ID, seizures and additional features (c.2509C>T / p.Arg837* - Ref3). One individual with a de novo missense variant (c.3416G>A / p.Arg1139Trp) with DD and ataxia, though without ID was reported in Ref1.

Details on 9 individuals with 0.3 - 5.6 Mb deletions spanning PUM1 and other genes are provided in Ref1. Features also included DD, ID, seizures, ataxia, etc.

Extensive initial investigations were reported for individuals in Refs 2 and 3 (various investigations incl. karyotype, SNP-array, targeted sequencing of OPHN1, KANSL1 or of a small panel of ID genes, biopsies and/or metabolic work-up) to rule out alternative causes. These only revealed a likely benign CNV and a GRIA3 SNV of uncertain significance in the case of an individual harboring the recurrent Arg1147Trp variant [Ref2].

Role of the gene (from OMIM):
Pumilio proteins, such as PUM1, negatively regulate gene expression by repressing translation of mRNAs to which they bind (Lee et al., 2016). A clinically significant PUM1 target is ataxin (ATXN1; 601556), mutation in which causes spinocerebellar ataxia-1 (SCA1; 601556).

Variant studies:
- Arg1147Trp was shown to be associated with normal PUM1 mRNA levels, but reduced (to ~43%) PUM1 protein levels in patient fibroblasts. ATXN1 mRNA and protein levels, as well as protein and/or mRNA levels of other PUM1 targets were shown to be increased (Ref1).
- In Ref1, in vitro transfection assays with wt or mt PUM1 were performed in HEK293T cells to evaluate repression of ATXN1 and E2F3. While overexpression of wt and Arg1147Trp were able to reduce ATXN1 and E2F3 levels, Arg1139Trp was not able to repress ATXN1 or E2F3.
- Upon overexpression in mouse hippocampal neurons, PUM1 missense mutations (among others Arg1139Trp and Arg1147Trp) were shown to alter neuronal morphology.

Overall haploinsufficiency is the proposed mechanism for the disorder for which the acronym PADDAS is used (Pumilio1-associated developmental disability, ataxia and seizure).

Milder mutations reducing PUM1 levels by 25% are associated with adult-onset ataxia without ID (PRCA or Pumilio1-related cerebellar ataxia) [Ref1].

Mouse models:
The role of PUM1 was first suggested in mouse models where Pum1 mutations were shown to lead to a SCA1-like phenotype (PMID cited : 12086639 - Watase et al 2002) further shown to be caused by increased Atxn1 mRNA and protein levels (PMID cited : 25768905 - Gennarino et al 2015).
The mouse model seems to recapitulate several of the features observed in affected individuals : Pum1 homozygous ko mice display among others hyperactivity, progressive cerebellar signs, spontaneous seizures as also observed in affected individuals (PMID cited : 25768905 - Gennarino et al 2015). Cryptorchidism was observed in 2 patients similar to testicular hypoplasia reported in Pum1 ko mice (PMID cited : 22342750 - Chen et al 2012).
- Heterozygous mice were evaluated in Ref1 with 69% or 75% exhibiting spontaneous seizures by the end of 30 or 35 wks respectively, with abnormal EEG activity already by 16 wks.

Additional individuals with PUM1 variants and a relevant phenotype of ID with or without seizures have been reported as part of the DDD study or as external submissions to Decipher and ClinVar :

https://decipher.sanger.ac.uk/search?q=PUM1#research-variants/results [ DDD4K.01387 participant ]
https://decipher.sanger.ac.uk/search?q=pum1#consented-patients/results [ external submission(s) ]
https://www.ncbi.nlm.nih.gov/clinvar/variation/431110/ [ splice-site variant in an individual with ID submitted prior to the 1st publication on the disorder ]
Intellectual disability - microarray and sequencing v3.0 CXorf56 Konstantinos Varvagiannis gene: CXorf56 was added
gene: CXorf56 was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: CXorf56 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: CXorf56 were set to 29374277; 31822863
Phenotypes for gene: CXorf56 were set to ?Mental retardation, X-linked 107, 301013
Penetrance for gene: CXorf56 were set to unknown
Review for gene: CXorf56 was set to AMBER
Added comment: Verkerk et al (2018 - PMID: 29374277) reported on a three-generation family with five males and one female presenting mild non-syndromic ID. Segregation was compatible with X-linked inheritance.

Multipoint linkage analysis with XL microsatellite markers demonstrated a linkage peak at Xq23-24 with LOD score of 3.3. Haplotype analysis and utilization of additional STR markers allowed narrowing to a region of 7.6 Mb containing 92 genes.

WGS in 3 affected males (spanning 3 generations) and 1 unaffected male and application of relevant filters for rare protein affecting variants within this region - present only in affected but absent in the unaffected individual - suggested a CXorf56 frameshift variant in exon 2 [NM_022101.3:c.159_160insTA / p.(Asp54*)] as the only relevant for this phenotype.

Sanger sequencing was performed for 25 family members with all 5 affected males and 1 affected female harboring this insertion and 8 unaffected females (also) shown to be carriers.

X-chromosome inactivation studies demonstrated that unaffected females had skewed inactivation (76-93%) of the variant allele, while the single affected female did not have a skewed XCI pattern (54%).

In EBV-transformed lymphoblasts grown with/without cycloheximide, mRNA levels were shown to be significantly lower in the affected female compared to unaffected ones (and corrected upon treatment with cycloheximide). mRNA levels were also significantly lower in cell lines from an affected male, with expression showing significant increase after treatment with cycloheximide. These results confirmed that nonsense-mediated decay applies.

The variant was absent from ExAC (where CXorf56 has a pLI of 0.93) and 188 healthy Dutch individuals.

The function of CXorf56 is not known. The gene appears to be expressed in brain and a (broad) range of other tissues [ https://gtexportal.org/home/gene/CXORF56 ].

Immunostaining in 8-week old murine brain, showed that the protein is present in the nucleus and cell soma of most neurons in brain cortex and cerebellum. Upon transfection of human CXorf56 cDNA in mouse primary hippocampal neurons, the protein localized in the nucleus, dendrites (co-localizing with Map2) and dendritic spines. As the authors note, the latter may suggest a role in synaptic function.

Overexpression in HEK293T cells demonstrated predominantly nuclear localization.

Mouse : Based on MGI (and an article by Cox et al. - PMID: 20548051 / both cited by the authors) male chimeras hemizygous for a gene trapped allele have abnormal midbrain-hindbrain boundary morphology, decreased forebrain size, while a subset hemizygous for a different gene trapped allele show growth delay [ http://www.informatics.jax.org/marker/MGI:1924894 ].

-----

Rocha et al (2019 - PMID: 31822863) report on 9 affected individuals with mild to severe ID belonging to 3 unrelated families. Additional features in this cohort - observed in some - included abnormal reflexes, fine tremor, seizures (in 3), abnormal gait, etc.

In the 1st family, 3 males presented with (severe/severe/moderate) ID and 2 females with mild ID. Following a normal CMA and FMR1 testing, trio plus exome sequencing revealed a CXorf56 in-frame deletion [NM_022101.3:c.498_503del / p.(Glu167_Glu168del)]. Sanger sequencing in 9 members, confirmed presence of the variant in one unaffected mother, all her affected sons (2) and daughers(2) and an affected grandson and absence in 2 remaining unaffected daughters. Skewing of XCI was seen in blood cells from affected females (97 and 83%) while the unaffected mother had complete inactivation of the carrier X-chromosome. The authors commented that even minor reductions in CXorf56 (suggested by XCI in affected females) may be detrimental and/or that inactivation for this gene may be different than that of AR gene (which was studied instead) or in other tissues.

In family 2, an affected mother (with learning difficulties) and her 2 sons - the most severely affected presenting moderate ID - harbored a frameshift variant [c.303_304delCTinsACCC / p.(Phe101Leufs*20)].

A male with ID belonging to a 3rd family, for which no further information was available, was found to harbor the c.498_503del variant (also discussed above) as a de novo event.

It has been commented that individuals with Xq24 deletions spanning CXorf56 present with ID, although (all) such deletions reported in the literature also span the neighboring UBE2A gene, associated with Mental retardation, X-linked syndromic, Nascimento-type (MIM #300860).

-----

In OMIM, the CXorf56-related phenotype is ?Mental retardation, X-linked 107 (# 301013), based only on the report by Verkerk et al.

This gene is included in gene panels for ID offered by some diagnostic laboratories (incl. Radboudumc).

-----

Overall, CXorf56 can be considered for inclusion in the ID panel either with amber (function of the gene unknown, skewed XCI also in affected females in the 2nd reference) or with green rating (several individuals from 4 families, compatible segregation studies and females presenting a milder phenotype than males or unaffected, LOD score in the 1st report, studies confirming lower mRNA levels and NMD, gene expressed in human brain, expression in mouse brain cortex and cerebellum, evidence from transfection studies in mouse hippocampal neurons).

[Note : penetrance was here set to unknown / It was complete for males, incomplete for females].
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v3.0 SUZ12 Konstantinos Varvagiannis changed review comment from: ID can be a feature in individuals heterozygous for SUZ12 pathogenic variants. 13 affected individuals (from 12 families) have been reported:

[1] PMID 28229514 (Imagawa et al, 2017) : 1 individual
[2] PMID 30019515 (Imagawa et al, 2018) : 2 further unrelated subjects
[3] PMID 31736240 (Cyrus et al, 2019) : 10 additional subjects (from 9 families)

Reviewed by Cyrus et al, features observed in more than half of the (13) affected individuals included prenatal and/or postnatal overgrowth (in some only prenatal, others only postnatal, others did not manifest overgrowth at all), some suggestive facial features (eg. prominent forehead, hypertelorism, downslanting palpebral fissures, round face, broad/low nasal bridge), DD and ID (the latter in 7/13, in most cases mild), advanced bone age, musculoskeletal abnormalities and cryptorchidism. Less frequent features included brain MRI abnormalities (eg. CC hypoplasia/agenesis, etc.), umbilical hernias, respiratory abnormalities, cardiac anomalies (in one).

All were diagnosed with WES/WGS/panel testing, with few having additional findings upon this or prior testing (eg. CNVs/SNVs).

SUZ12 encodes one of the 4 core proteins of the PRC2 complex (the 3 other being encoded by EZH1/2, EED and RBBP4/7). The complex has a methyltransferase activity, catalyzing addition of up to 3 methyl groups on histone 3 at lysine residue 27 (H3K27), leading to chromatin compaction and further to gene silencing.

Mutations in genes encoding 2 other core components of the PRC2 complex - namely EZH2 and EED - cause Weaver and Cohen-Gibson syndrome with overlapping phenotype incl. overgrowth, advanced bone age, craniofacial features and DD/ID.

The SET domain of EZH1/2 and EED as well as the VEFS domain of SUZ12 are contributing to the catalytic activity.

SUZ12 variants reported to date include missense and pLoF variants (frameshift, nonsense, splice site ones) predicted to disrupt or eliminate the VEFS-box domain [almost all missense within this domain with the exception of one proximal to it (Arg535Gln) / pLoF causing truncation prior or within this domain (Arg654Ter might be an exception)] {NP_056170.2}.

Variants either occurred de novo or were inherited (~1/3), on some occasions from a mildly affected parent. Parental mosaicism has also been reported (eg. in ref1, and one or possibly two additional families in ref3).

Some preliminary assumptions on possible genotype-phenotype correlations (for overgrowth and ID related to missense/pLoF variants) are discussed in ref3.

SUZ12 is also be deleted in some patients with NF1 deletion (and a diagnosis of neurofibromatosis type 1). Deletion of SUZ12 has been proposed to contribute to the phenotype of these individuals (eg. overgrowth, cognitive development, facial features). [Discussed in ref1].

Functional studies have been carried out only in the first report (ref1) and demonstrated decreased trimethylation of H3K27 in the case of a missense variant. Overall a partial loss-of-function mechanism has been proposed for the variants.

Mouse models: A study by Pasini et al (PMID: 15385962) did not report phenotypic differences between wt and heterozygous Suz12 knockout mice (gene-trap vector) as for size, morphology and fertility. Total knockout resulted in embryonic lethality, significant growth retardation and several developmental defects. Loss of Suz12 was shown to result in absence of di- and tri-methylated H3K27 in the ko embryos. In another study cited (Miro et al - PMID: 19535498) heterozygous mice (replacement of exons 12-16 with a lacZ gene and neo cassette) displayed variable CNS defects with incomplete penetrance.

The role of the PRC2 complex and the phenotypes related to mutations in genes encoding its core components, are discussed in PMID: 31724824 (also by Cyrus et al, 2019).

SUZ12 is not associated with any phenotype in OMIM. In G2P it is included in the DD panel associated with Weaver-like overgrowth syndrome (disease confidence : confirmed). The gene is also included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx).
Sources: Literature; to: ID can be a feature in individuals heterozygous for SUZ12 pathogenic variants. 13 affected individuals (from 12 families) have been reported:

[1] PMID 28229514 (Imagawa et al, 2017) : 1 individual
[2] PMID 30019515 (Imagawa et al, 2018) : 2 further unrelated subjects
[3] PMID 31736240 (Cyrus et al, 2019) : 10 additional subjects (from 9 families)

Reviewed by Cyrus et al, features observed in more than half of the (13) affected individuals included prenatal and/or postnatal overgrowth (in some only prenatal, others only postnatal, others did not manifest overgrowth at all), some suggestive facial features (eg. prominent forehead, hypertelorism, downslanting palpebral fissures, round face, broad/low nasal bridge), DD and ID (the latter in 7/13, in most cases mild), advanced bone age, musculoskeletal abnormalities and cryptorchidism. Less frequent features included brain MRI abnormalities (eg. CC hypoplasia/agenesis, etc.), umbilical hernias, respiratory abnormalities, cardiac anomalies (in one).

All were diagnosed with WES/WGS/panel testing, with few having additional findings upon this or prior testing (eg. CNVs/SNVs).

SUZ12 encodes one of the 4 core proteins of the PRC2 complex (the 3 other being encoded by EZH1/2, EED and RBBP4/7). The complex has a methyltransferase activity, catalyzing addition of up to 3 methyl groups on histone 3 at lysine residue 27 (H3K27), leading to chromatin compaction and further to gene silencing.

Mutations in genes encoding 2 other core components of the PRC2 complex - namely EZH2 and EED - cause Weaver and Cohen-Gibson syndrome with overlapping phenotype incl. overgrowth, advanced bone age, craniofacial features and DD/ID.

The SET domain of EZH1/2 and EED as well as the VEFS domain of SUZ12 are contributing to the catalytic activity.

SUZ12 variants reported to date include missense and pLoF variants (frameshift, nonsense, splice site ones) predicted to disrupt or eliminate the VEFS-box domain [almost all missense within this domain with the exception of one proximal to it (Arg535Gln) / pLoF causing truncation prior or within this domain (Arg654Ter might be an exception)] {NP_056170.2}.

Variants either occurred de novo or were inherited (~1/3), on some occasions from a mildly affected parent. Parental mosaicism has also been reported (eg. in ref1, and one or possibly two additional families in ref3).

Some preliminary assumptions on possible genotype-phenotype correlations (for overgrowth and ID related to missense/pLoF variants) are discussed in ref3.

SUZ12 may also be deleted in some patients with NF1 deletion (and a diagnosis of neurofibromatosis type 1). Deletion of SUZ12 has been proposed to contribute to the phenotype of these individuals (eg. overgrowth, cognitive development, facial features). [Discussed in ref1].

Functional studies have been carried out only in the first report (ref1) and demonstrated decreased trimethylation of H3K27 in the case of a missense variant. Overall a partial loss-of-function mechanism has been proposed for the variants.

Mouse models: A study by Pasini et al (PMID: 15385962) did not report phenotypic differences between wt and heterozygous Suz12 knockout mice (gene-trap vector) as for size, morphology and fertility. Total knockout resulted in embryonic lethality, significant growth retardation and several developmental defects. Loss of Suz12 was shown to result in absence of di- and tri-methylated H3K27 in the ko embryos. In another study cited (Miro et al - PMID: 19535498) heterozygous mice (replacement of exons 12-16 with a lacZ gene and neo cassette) displayed variable CNS defects with incomplete penetrance.

The role of the PRC2 complex and the phenotypes related to mutations in genes encoding its core components, are discussed in PMID: 31724824 (also by Cyrus et al, 2019).

SUZ12 is not associated with any phenotype in OMIM. In G2P it is included in the DD panel associated with Weaver-like overgrowth syndrome (disease confidence : confirmed). The gene is also included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx).
Sources: Literature
Intellectual disability - microarray and sequencing v3.0 SUZ12 Konstantinos Varvagiannis changed review comment from: ID can be a feature in individuals heterozygous for SUZ12 pathogenic variants. 13 affected individuals (from 12 families) have been reported:

[1] PMID 28229514 (Imagawa et al, 2017) : 1 individual
[2] PMID 30019515 (Imagawa et al, 2018) : 2 further unrelated subjects
[3] PMID 31736240 (Cyrus et al, 2019) : 10 newly diagnosed subjects (from 9 families)

Reviewed by Cyrus et al, features observed in more than half of the (13) affected individuals included prenatal and/or postnatal overgrowth (in some only prenatal, others only postnatal, others did not manifest overgrowth at all), some suggestive facial features (eg. prominent forehead, hypertelorism, downslanting palpebral fissures, round face, broad/low nasal bridge), DD and ID (the latter in 7/13, in most cases mild), advanced bone age, musculoskeletal abnormalities and cryptorchidism. Less frequent features included brain MRI abnormalities (eg. CC hypoplasia/agenesis, etc.), umbilical hernias, respiratory abnormalities, cardiac anomalies (in one).

All were diagnosed with WES/WGS/panel testing, with few having additional findings upon this or prior testing (eg. CNVs/SNVs).

SUZ12 encodes one of the 4 core proteins of the PRC2 complex (the 3 other being encoded by EZH1/2, EED and RBBP4/7). The complex has a methyltransferase activity, catalyzing addition of up to 3 methyl groups on histone 3 at lysine residue 27 (H3K27), leading to chromatin compaction and further to gene silencing.

Mutations in genes encoding 2 other core components of the PRC2 complex - namely EZH2 and EED - cause Weaver and Cohen-Gibson syndrome with overlapping phenotype incl. overgrowth, advanced bone age, craniofacial features and DD/ID.

The SET domain of EZH1/2 and EED as well as the VEFS domain of SUZ12 are contributing to the catalytic activity.

SUZ12 variants reported to date include missense and pLoF variants (frameshift, nonsense, splice site ones) predicted to disrupt or eliminate the VEFS-box domain [almost all missense within this domain with the exception of one proximal to it (Arg535Gln) / pLoF causing truncation prior or within this domain (Arg654Ter might be an exception)] {NP_056170.2}.

Variants either occurred de novo or were inherited (~1/3), on some occasions from a mildly affected parent. Parental mosaicism has also been reported (eg. in ref1, and one or possibly two additional families in ref3).

Some preliminary assumptions on possible genotype-phenotype correlations (for overgrowth and ID related to missense/pLoF variants) are discussed in ref3.

SUZ12 is also be deleted in some patients with NF1 deletion (and a diagnosis of neurofibromatosis type 1). Deletion of SUZ12 has been proposed to contribute to the phenotype of these individuals (eg. overgrowth, cognitive development, facial features). [Discussed in ref1].

Functional studies have been carried out only in the first report (ref1) and demonstrated decreased trimethylation of H3K27 in the case of a missense variant. Overall a partial loss-of-function mechanism has been proposed for the variants.

Mouse models: An study by Pasini et al (PMID: 15385962) did not report phenotypic differences between wt and heterozygous Suz12 knockout mice (gene-trap vector) as for size, morphology and fertility. Total knockout resulted in embryonic lethality, significant growth retardation and several developmental defects. Loss of Suz12 was shown to result in absence of di- and tri-methylated H3K27 in the ko embryos. In another study cited (Miro et al - PMID: 19535498) heterozygous mice (replacement of exons 12-16 with a lacZ gene and neo cassette) displayed variable CNS defects with incomplete penetrance.

The role of the PRC2 complex and the phenotypes related to mutations in genes encoding its core components, are discussed in PMID: 31724824 (also by Cyrus et al, 2019).

SUZ12 is not associated with any phenotype in OMIM. In G2P it is included in the DD panel associated with Weaver-like overgrowth syndrome (disease confidence : confirmed). The gene is also included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx).
Sources: Literature; to: ID can be a feature in individuals heterozygous for SUZ12 pathogenic variants. 13 affected individuals (from 12 families) have been reported:

[1] PMID 28229514 (Imagawa et al, 2017) : 1 individual
[2] PMID 30019515 (Imagawa et al, 2018) : 2 further unrelated subjects
[3] PMID 31736240 (Cyrus et al, 2019) : 10 additional subjects (from 9 families)

Reviewed by Cyrus et al, features observed in more than half of the (13) affected individuals included prenatal and/or postnatal overgrowth (in some only prenatal, others only postnatal, others did not manifest overgrowth at all), some suggestive facial features (eg. prominent forehead, hypertelorism, downslanting palpebral fissures, round face, broad/low nasal bridge), DD and ID (the latter in 7/13, in most cases mild), advanced bone age, musculoskeletal abnormalities and cryptorchidism. Less frequent features included brain MRI abnormalities (eg. CC hypoplasia/agenesis, etc.), umbilical hernias, respiratory abnormalities, cardiac anomalies (in one).

All were diagnosed with WES/WGS/panel testing, with few having additional findings upon this or prior testing (eg. CNVs/SNVs).

SUZ12 encodes one of the 4 core proteins of the PRC2 complex (the 3 other being encoded by EZH1/2, EED and RBBP4/7). The complex has a methyltransferase activity, catalyzing addition of up to 3 methyl groups on histone 3 at lysine residue 27 (H3K27), leading to chromatin compaction and further to gene silencing.

Mutations in genes encoding 2 other core components of the PRC2 complex - namely EZH2 and EED - cause Weaver and Cohen-Gibson syndrome with overlapping phenotype incl. overgrowth, advanced bone age, craniofacial features and DD/ID.

The SET domain of EZH1/2 and EED as well as the VEFS domain of SUZ12 are contributing to the catalytic activity.

SUZ12 variants reported to date include missense and pLoF variants (frameshift, nonsense, splice site ones) predicted to disrupt or eliminate the VEFS-box domain [almost all missense within this domain with the exception of one proximal to it (Arg535Gln) / pLoF causing truncation prior or within this domain (Arg654Ter might be an exception)] {NP_056170.2}.

Variants either occurred de novo or were inherited (~1/3), on some occasions from a mildly affected parent. Parental mosaicism has also been reported (eg. in ref1, and one or possibly two additional families in ref3).

Some preliminary assumptions on possible genotype-phenotype correlations (for overgrowth and ID related to missense/pLoF variants) are discussed in ref3.

SUZ12 is also be deleted in some patients with NF1 deletion (and a diagnosis of neurofibromatosis type 1). Deletion of SUZ12 has been proposed to contribute to the phenotype of these individuals (eg. overgrowth, cognitive development, facial features). [Discussed in ref1].

Functional studies have been carried out only in the first report (ref1) and demonstrated decreased trimethylation of H3K27 in the case of a missense variant. Overall a partial loss-of-function mechanism has been proposed for the variants.

Mouse models: A study by Pasini et al (PMID: 15385962) did not report phenotypic differences between wt and heterozygous Suz12 knockout mice (gene-trap vector) as for size, morphology and fertility. Total knockout resulted in embryonic lethality, significant growth retardation and several developmental defects. Loss of Suz12 was shown to result in absence of di- and tri-methylated H3K27 in the ko embryos. In another study cited (Miro et al - PMID: 19535498) heterozygous mice (replacement of exons 12-16 with a lacZ gene and neo cassette) displayed variable CNS defects with incomplete penetrance.

The role of the PRC2 complex and the phenotypes related to mutations in genes encoding its core components, are discussed in PMID: 31724824 (also by Cyrus et al, 2019).

SUZ12 is not associated with any phenotype in OMIM. In G2P it is included in the DD panel associated with Weaver-like overgrowth syndrome (disease confidence : confirmed). The gene is also included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx).
Sources: Literature
Intellectual disability - microarray and sequencing v3.0 SUZ12 Konstantinos Varvagiannis gene: SUZ12 was added
gene: SUZ12 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: SUZ12 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SUZ12 were set to 28229514; 30019515; 31736240; 15385962; 19535498; 31724824
Phenotypes for gene: SUZ12 were set to Overgrowth; Global developmental delay; Intellectual disability; Accelerated skeletal maturation; Abnormality of the skeletal system; Abnormality of the genitourinary system; Abnormality of the corpus callosum; Abnormality of the respiratory system; Abnormality of the abdominal wall
Penetrance for gene: SUZ12 were set to unknown
Review for gene: SUZ12 was set to GREEN
Added comment: ID can be a feature in individuals heterozygous for SUZ12 pathogenic variants. 13 affected individuals (from 12 families) have been reported:

[1] PMID 28229514 (Imagawa et al, 2017) : 1 individual
[2] PMID 30019515 (Imagawa et al, 2018) : 2 further unrelated subjects
[3] PMID 31736240 (Cyrus et al, 2019) : 10 newly diagnosed subjects (from 9 families)

Reviewed by Cyrus et al, features observed in more than half of the (13) affected individuals included prenatal and/or postnatal overgrowth (in some only prenatal, others only postnatal, others did not manifest overgrowth at all), some suggestive facial features (eg. prominent forehead, hypertelorism, downslanting palpebral fissures, round face, broad/low nasal bridge), DD and ID (the latter in 7/13, in most cases mild), advanced bone age, musculoskeletal abnormalities and cryptorchidism. Less frequent features included brain MRI abnormalities (eg. CC hypoplasia/agenesis, etc.), umbilical hernias, respiratory abnormalities, cardiac anomalies (in one).

All were diagnosed with WES/WGS/panel testing, with few having additional findings upon this or prior testing (eg. CNVs/SNVs).

SUZ12 encodes one of the 4 core proteins of the PRC2 complex (the 3 other being encoded by EZH1/2, EED and RBBP4/7). The complex has a methyltransferase activity, catalyzing addition of up to 3 methyl groups on histone 3 at lysine residue 27 (H3K27), leading to chromatin compaction and further to gene silencing.

Mutations in genes encoding 2 other core components of the PRC2 complex - namely EZH2 and EED - cause Weaver and Cohen-Gibson syndrome with overlapping phenotype incl. overgrowth, advanced bone age, craniofacial features and DD/ID.

The SET domain of EZH1/2 and EED as well as the VEFS domain of SUZ12 are contributing to the catalytic activity.

SUZ12 variants reported to date include missense and pLoF variants (frameshift, nonsense, splice site ones) predicted to disrupt or eliminate the VEFS-box domain [almost all missense within this domain with the exception of one proximal to it (Arg535Gln) / pLoF causing truncation prior or within this domain (Arg654Ter might be an exception)] {NP_056170.2}.

Variants either occurred de novo or were inherited (~1/3), on some occasions from a mildly affected parent. Parental mosaicism has also been reported (eg. in ref1, and one or possibly two additional families in ref3).

Some preliminary assumptions on possible genotype-phenotype correlations (for overgrowth and ID related to missense/pLoF variants) are discussed in ref3.

SUZ12 is also be deleted in some patients with NF1 deletion (and a diagnosis of neurofibromatosis type 1). Deletion of SUZ12 has been proposed to contribute to the phenotype of these individuals (eg. overgrowth, cognitive development, facial features). [Discussed in ref1].

Functional studies have been carried out only in the first report (ref1) and demonstrated decreased trimethylation of H3K27 in the case of a missense variant. Overall a partial loss-of-function mechanism has been proposed for the variants.

Mouse models: An study by Pasini et al (PMID: 15385962) did not report phenotypic differences between wt and heterozygous Suz12 knockout mice (gene-trap vector) as for size, morphology and fertility. Total knockout resulted in embryonic lethality, significant growth retardation and several developmental defects. Loss of Suz12 was shown to result in absence of di- and tri-methylated H3K27 in the ko embryos. In another study cited (Miro et al - PMID: 19535498) heterozygous mice (replacement of exons 12-16 with a lacZ gene and neo cassette) displayed variable CNS defects with incomplete penetrance.

The role of the PRC2 complex and the phenotypes related to mutations in genes encoding its core components, are discussed in PMID: 31724824 (also by Cyrus et al, 2019).

SUZ12 is not associated with any phenotype in OMIM. In G2P it is included in the DD panel associated with Weaver-like overgrowth syndrome (disease confidence : confirmed). The gene is also included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx).
Sources: Literature
Intellectual disability - microarray and sequencing v2.1135 SNX27 Konstantinos Varvagiannis gene: SNX27 was added
gene: SNX27 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: SNX27 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNX27 were set to 25894286; 31721175; 21300787; 23524343
Phenotypes for gene: SNX27 were set to Generalized hypotonia; Global developmental delay; Intellectual disability; Seizures
Penetrance for gene: SNX27 were set to Complete
Review for gene: SNX27 was set to GREEN
gene: SNX27 was marked as current diagnostic
Added comment: Evidence from 2 publications suggests that DD, ID and seizures are part of the phenotype of individuals with biallelic SNX27 pathogenic variants :
---------
Damseh, Danson et al (2015 - PMID: 25894286) first reported on a consanguineous family with 4 affected sibs, homozygous for an SNX27 pathogenic variant. Features incl. hypotonia soon after birth, failure to thrive, severely delayed psychomotor development with no milestone acquisition, occurrence of myoclonic seizures with 3 individuals deceased early. Exome sequencing in one revealed a few candidate variants, with an SNX27 frameshift one [NM_030918.6:c.515_516del - p.(His172Argfs*6) / absent from ExAC] being the only retained following Sanger segregation studies. Using fibroblasts from an affected individual, Western blot with an antibody which would also bind prior to the truncation site, was consistent with dramatically reduced/absent SNX27 truncated mutant protein. Protein levels of VPS35, a component of the retromer responsible for direct cargo binding (not mediated by a cargo adaptor as SNX27), were normal.
---------
Parente et al (2019 - PMID: 31721175) reported on a 13-year-old male with motor and language delay, ADHD, ID (kindergarten academic level at the age of 13) and seizures with onset at the age of 9 years (GTC, with abnormal EEG and postical SV tachycardia). Variable physical findings were reported. White matter hyperintesities were noted upon initial brain MRI (but were less marked in subsequent ones). Initial genetic testing (Alexander's disease, CMA, FMR1) was normal. Exome revealed compound heterozygosity for 2 SNX27 variants (NM_030918.5/NM_001330723.1 both apply c.510C>G - p.Tyr170* and c.1295G>A - p.Cys432Tyr) each inherited from healthy carrier parents. There were no other potentially causative variants. A parental history of - isolated - late onset seizures was reported (so this individual may not be considered for the seizure phenotype here).

The authors also reported on a further 31-year old affected male. This individual had infantile hypotonia, poor eye contact with subsequent significant DD, seizures (febrile/afebrile T-C with onset at the age of 14m) and ID estimated in the severe range. Variable - though somewhat different - physical findings were reported. Initial work-up included basic metabolic testing, standard karyotype, FISH for 15q11 and subtelomeric regions and PHF6 genetic testing - all normal. Exome (and subsequent Sanger confirmation/parental studies) revealed compound heterozygosity for a missense and a frameshift variant (c.989G>A / p.Arg330His and c.782dupT / p.Leu262Profs*6 same in NM_001330723.1, NM_030918.6).
---------
SNX27 encodes sorting nexin 27, a cargo adaptor for the retromer. The latter is a multi-protein complex essential for regulating the retrieval and recycling of transmembrane cargos from endosomes to the trans-Golgi network or the plasma membrane [Lucas et al 2016 - PMID: 27889239 / McNally et al 2018 - PMID: 30072228].

As summarized by Parente et al, the encoded protein by regulating composition of the cell surface influences several processes eg. neuronal excitability, synaptic plasticity, Wnt signaling etc. It has been shown to interact with surface receptors and their ligands including GIRK channels, 5-HT4, ionotropic glutamate receptors (incl. NMDA- and AMPA-type receptors) and mGluR5 [several refs. provided].

Knockout of Snx27 in mice resulted in embryonic lethality (16% hmz of the 25% expected), severe postnatal growth retardation and death within the first 3 weeks. Snx27(+/-) mice have normal neuroanatomy but exhibit cognitive deficits (in learning and memory) and defects in synaptic function/plasticity with reduced amounts of NMDA and AMPA receptors (Cai et al - PMID: 21300787, Wang et al - PMID: 23524343).
---------
The gene is included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx) and a current primary ID gene in SysID. There is no associated phenotype in OMIM/G2P.
Sources: Literature
Intellectual disability - microarray and sequencing v2.1047 METTL5 Konstantinos Varvagiannis gene: METTL5 was added
gene: METTL5 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: METTL5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: METTL5 were set to 29302074; http://doi.org/10.1016/j.ajhg.2019.09.007; https://imgc2019.sciencesconf.org/data/abstract_book_complete.pdf
Phenotypes for gene: METTL5 were set to Delayed speech and language development; Intellectual disability; Microcephaly; Behavioral abnormality
Penetrance for gene: METTL5 were set to Complete
Review for gene: METTL5 was set to GREEN
Added comment: [1] - PMID: 29302074 :
In a WES/WGS study of 404 consanguineous families with two or more offspring affected by ID, Hu et al. identified two sibs homozygous for a METTL5 missense variant [NM_014168:c.182G>A / p.Gly61Asp]. These 2 subjects, born to first cousin parents from Iran, presented with early learning impairment, aggressive behaviour, severe microcephaly (-7SD and -8SD) and ID formally evaluated to be in the severe range. Sanger confirmation of variants and segregation studies were performed for all available and informative members in families participating in the study. In silico predictions were all in favour of a deleterious effect (PolyPhen2, MutationTaster, SIFT, CADD) and the variant was absent from ExAC. The effect of the specific variant was studied in ref. 2 (below).

[2] - DOI: 10.1016/j.ajhg.2019.09.007 :
Richard et al. (2019) reported on 5 additional individuals from 2 consanguineous families. Common phenotype consisted of speech delay, moderate/severe ID (4/4), microcephaly (4/4 - though milder than in the first report), behavioral problems (ADHD, aggressiveness, autistic feat.) and possibly some overlapping facial features (nose and ear abnormalities). 3 sibs from the 1st family, from Pakistan, were homozygous for a frameshift variant (NM_014167.2:c.344_345delGA / p.Arg115Asnfs*19) while sibs from the 2nd family, from Yemen, were homozygous for p.Lys191Valfs*1 (c.571_572delAA). Confirmation and segregation studies supported a role for the variants.

The authors performed additional studies for METTL5 and all 3 variants reported to date, notably:
- Based on RNA-seq data from the Allen Brain Atlas, METTL5 is expressed in the developing and adult human brain (incl. cerebellar cortex, hippocampus and striatum).
- Immunostaining in mouse brain demonstrated ubiquitous expression (postnatal day 30).
- In rat hippocampal neurons, enrichment of METTL5 was found in the soma, the nucleus and pre- and post- synaptic regions.
- Myc-/GFP-tagged METTL5 wt or mutants were transiently expressed in COS7 cells, and were found in the cytoplasm and nucleus. Levels of the 2 frameshift variants were significantly reduced compared with wt, although this was not the case for Gly61Asp.
- Upon transfection of rat hippocampal neurons, METTL5-GFP tagged wt and mt proteins showed similar localicalization in nucleus and dendrites.
- Western blot on HEK293T cells transfected with Myc-METTL5 wt or mt constructs demonstrated decreased amounts for the frameshift (but not the missense) variants while comparison after addition of a proteasome inhibitor or cyclohexamide suggested that this is not probably due to decreased mutant protein - rather than mRNA (NMD) - stability.
- In zebrafish, morpholino knockdown of mettl5 led to reduced head size and head/body ratio (reproducing the microcephaly phenotype) and curved tails. Forebrain and midbrain sizes were also significantly reduced.

Based on the ACMG criteria, Gly61Asp is classified as VUS (PM2, PP1, PP3) and the frameshift ones as pathogenic (PS3, PM2, PM4, PP1, PP3).

The authors comment that METTL5 is an uncharacterized member of the methyltransferase superfamily (of 33 METTL proteins). Variants in other methyltransferase-like genes (mainly METTL23) have been associated with ID, while various histone-/DNA-/tRNA-/rRNA- methyltransferases such as EHMT1, DNMT3A, NSUN2, FTSJ1, etc have been implicated in ID. Given the role of methyltransferases in neurodevelopment and neuroplasticity, homology comparisons suggesting presence of relevant domain in METTL5 and accumulation of the protein in the nucleus, a role as epigenetic regulator is proposed (see also ref. 3).

[3] - Conference abstract by Helmut et al. ["A novel m6A RNA methyltransferase in mammals - characterization of Mettl5 mutant mice in the German Mouse Clinic" - Oral presentation in the 33rd International Mammalian Genome Conference Sept. 2019 - available at : https://imgc2019.sciencesconf.org/data/abstract_book_complete.pdf ]
The group using an in vitro methyltransferase assay, identified METTL5 as a m6A RNA methyltransferase. Generation of Mettl5-knockout mice using the CRISPR/Cas technology, suggested that homozygous mice are subviable, with lower body mass and abnormal growth of nasal bones in half. Homozygous mice were hypoactive and hypoexploratory during an open field test at the age of 8 weeks, while further alterations were observed in neurological functions. Phenotypic deviations were absent or very mild in heterozygous animals. As a result, the mouse model appeared to recapitulate relevant human phenotypes (microcephaly, ID and growth retardation).

----
There is no associated entry in OMIM (neither for the gene nor for a related disorder). G2P does not list any phenotype for this gene, either.

METTL5 is included in the SysID database as a current primary ID gene (cited: 27457812, 28097321 / Given the shared co-authors with the study by Richard et al. as well as the overlapping variants, these articles probably report on the same individuals recently described in more detail).

The gene is included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx).
----

Overall, METTL5 could be considered for inclusion in the ID panel probably as green (3 families, 3 variants, segregation, suggested role of the gene, relevant expression patterns, some evidence at the variant-level, zebrafish and mouse models) or amber (underlying effect of Gly61Asp unknown and variant classified as VUS).
Sources: Literature
Intellectual disability - microarray and sequencing v2.1022 CACNA2D2 Konstantinos Varvagiannis gene: CACNA2D2 was added
gene: CACNA2D2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: CACNA2D2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACNA2D2 were set to 23339110; 24358150; 30410802; 29997391; 31402629; 11487633; 11756448; 4177347; 14660671; 15331424
Phenotypes for gene: CACNA2D2 were set to Cerebellar atrophy with seizures and variable developmental delay (MIM 618501)
Penetrance for gene: CACNA2D2 were set to Complete
Review for gene: CACNA2D2 was set to AMBER
gene: CACNA2D2 was marked as current diagnostic
Added comment: Gene reviewed for the epilepsy panel. Due to the phenotype of EE, with variable GDD (severe in many cases) and/or ID (either specifically commented on or inferred in some cases, although not universal) this gene might also be relevant for the current panel. CACNA2D2 is also included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx) as well as the SysID database. There is no associated phenotype in G2P.

Copied from the epilepsy panel:

Biallelic pathogenic CACNA2D2 variants cause Cerebellar atrophy with seizures and variable developmental delay (MIM 618501).

A recent OMIM update, a subsequent relevant publication by Punatha et al. as well as several additional LP/P variants in ClinVar for the phenotype of epileptic encephalopathy, support possible upgrade to green.

The following affected individuals appear to be relevant [NM_006030.3 used as RefSeq unless otherwise specified]:

[1] Edvardson et al. (PMID: 23339110) - 3 sibs born to consanguineous parents with EIEE, severe GDD / ID (inferred from the descritpion, at least for the oldest one), cerebellar atrophy and movement abnormalities. A CACNA2D2 variant (c.3137T>C / p.Leu1046Pro) was found in affected individuals by SNP-arrays and WES in one of them. Functional studies (reduction in current density of calcium channels in Xenopus laevis oocytes) supported the deleterious effect of the variant. A role of a rare hmz CESLR3 variant could not be ruled out.

[2] Pippucci et al. (PMID: 24358150) - 1 individual born to consanguineous parents, presenting with EE (onset at 1-2 m), severe GDD, cerebellar atrophy and choreiform movements. Homozygosity for a LoF variant (c.1294delA - p.Asn432fs) was found by WES. The role of the variant was further supported by expression studies (80% reduced mRNA levels, protein levels estimated at 3% of control / milder effect in htz parents). The proband was also hmz for a CESLR3 variant. Previous studies incl. 'high-resolution karyotype' and metabolic investigations.

[3] Butler et al. (PMID: 30410802) - A 5 y.o. male, with EE (seizure onset at 7m / GDD) and cerebellar atrophy. Compound heterozygosity for c.782C>T (p.Pro261Leu) and c.3137T>C (p.Leu1046Pro) was demonstrated by WES and supported by segregation studies.

[4] Valence et al. (PMID: 29997391) - Reported on a 20 y.o. male belonging to a cohort of 20 individuals with congenital ataxia, all from consaguineous families. This individual, who had cerebellar atrophy, ataxia, a single episode of febrile seizures and normal cognitive impairment was homozygosity for c.2971G>A (p.Asp991Asn). RT-PCR revealed presence of a normal length transcript as well as an additional, longer one, due to a concurrent splicing effect (activation of a cryptic donor splice site and retention of 4 bases of intronic sequence). Presence of both nl/abn length transcripts was presumed to explain the mild phenotype (variability also commented in OMIM).

[5] Punatha et al. (PMID: 31402629) - 3 affected individuals from 2 consanguineous families presenting with early onset EE (onset 1-7m), GDD/ID, cerebelar atrophy and ataxia. Sibs from the first family were homozygous for c.1778G>C (p.Arg593Pro). An affected 5 y.o. child from the 2nd family was homozygous for c.485_486delAT (p.Tyr162Ter). Mutations were found by WES in regions of AOH.

The following variants - not reported in the literature - have been submitted in ClinVar as LP / P for EE:
[VCV000645106.1] NM_006030.4:c.1389+2T>C - EIEE with suppression bursts - Likely Pathogenic (Invitae)
[VCV000570589.1] NM_006030.4:c.1956_1960del (p.Asn652fs) - EIEE - Pathogenic (Invitae)
[VCV000578284.1] NM_006030.4:c.1555C>T (p.Gln519Ter) - EIEE - Pathogenic (Invitae)
[VCV000653393.1] NM_006030.4:c.851dup (p.Ala286fs) - EIEE with suppression bursts - Pathogenic (Invitae)
[VCV000411003.1] NM_006030.4:c.485_486del (p.Tyr161_Tyr162insTer) - EIEE - Pathogenic (Invitae)

Additional ones have been reported as LP / P although the condition is not specified.
[VCV000620551.1] NM_006030.4:c.1023C>A (p.Cys341Ter) - Likely pathogenic (GeneDx)
[VCV000373439.2] NM_006030.4:c.1846-1G>A - Likely pathogenic (GeneDx)
[VCV000423330.2] NM_006030.4:c.200dup (p.His68fs) - Pathogenic (GeneDx).

The aforementioned laboratories include CACNA2D2 in gene panels for epilepsy (Invitae) and/or ID (GeneDx).

A role for the CACNA2D2 is supported by :
- The highly overlapping features (with the exception of the milder phenotype reported by Valence et al.) incl. early onset of seizures, GDD, cerebellar atrophy in all (9/9 incl. the individual reported by Valence, as evaluated Punatha et al). Ataxia was a feature in many (with movement abnormalities also in the remaining ones).
- The role of the gene encoding the alpha-2-delta-2 auxiliary subunit of high voltage-gated calcium channels. Auxiliary subunits modulate calcium current and channel activation and inactivation kinetics, and may be involved in proper assembly and membrane localization of the channels (summary by Edvardson and OMIM).
- Functional / expression studies for some of the variants (as in Refs 1,2,4).
- Relevant expression patterns (notably in cerebellum) [GTEx project]
- Mouse models recapitulating the human phenotypes (summarized by Edvardson et al) : The 'ducky' mouse model (due to biallelic Cacna2d2 mutations) presenting absence epilepsy, spike-wave seizures and ataxia. Dysgenesis of the cerebellum is among the neuropathological findings (PMIDs cited : 11487633, 11756448, 4177347). The 'entla' mouse model (also AR due to an in-frame duplication) presents also epilepsy and ataxia (PMID : 14660671). Targeted knockout in another mouse model resulted also in ataxic gait, seizure susceptibility and cerebellar anomalies/degeneration (PMID: 15331424).

[Please consider inclusion in other relevant panels eg. for cerebellar anomalies / ataxia].
Sources: Literature
Intellectual disability - microarray and sequencing v2.1015 HNRNPR Konstantinos Varvagiannis changed review comment from: Duijkers et al. (2019 - PMID: 31079900) report on the phenotype of 4 individuals with de novo HNRNPR variants and provide additional information on a previously published case (Helbig et al, 2016 - PMID: 26795593). All 5 were unrelated.

The phenotype consisted of DD (5/5 - moderate to severe in 4 for which this has been commented on), postnatal microcephaly, seizures, brachydactyly, with additional (cardiac, urogenital, etc) anomalies observed in few. Some partially overlapping facial features were also noted.

3 truncating variants as well as a missense one, all localizing within the last exon of the gene (NM_001102398.2 used as ref. although this exon is shared by all transcripts).

HNRNPR encodes heterogeneous nuclear ribonucleoprotein R, which is part of the spliceosome C. The latter functions in the nucleus to process and transport mRNA. Apart from splicing hnRNPs are also involved in other levels of gene regulation (PMID: 27215579). Some hnRNPs have been found in the cytoplasm in stress granules, aggregations of protein, RNAs and stalled initiation complexes that are formed as stress response upon oxidative insult and dissipate upon cessation of this insult.

Western blot in LCLs from affected individuals demonstrated the presence of the truncated protein as well as the full-length and short isoform (as expected by the variant localization).
As the C-terminal part has features of a "prion-like domain" (PrLD), critical for the formation of stress granules in the case of hnRNP-related disorders, comparison of fibroblasts from affected and healthy individuals revealed abnormal persistence of these granules in affected individuals following a recovery period, despite similar formation either at basal levels or under conditions of stress.

In line with a role of hnRNPs in splicing and gene regulation, RNA-Sequencing in fibroblasts from 2 affected individuals revealed abnormal splicing of some genes (eg. HOXA5, HOXB3, LHX9) and significant dysregulation of genes important for the development (upregulation of FOXG1, TBX1, several members of the HOX family and downregulation of LHX9, IRX3, etc) possibly contributing to the patient features.

Helbig et al. provide details on animal studies incl.expression in neural tissues (cerebrum and cerebellum), higher levels of expression early in the development (of both R1/R2 isoforms), etc (extensive discussion in the supplement with several articles cited).

HNRNPR is not associated with any phenotype in OMIM/G2P.

As a result this gene can be considered for inclusion as amber (developmental outcome not commented on sufficiently despite moderate/severe DD in most).
Sources: Literature; to: Duijkers et al. (2019 - PMID: 31079900) report on the phenotype of 4 individuals with de novo HNRNPR variants and provide additional information on a previously published case (Helbig et al, 2016 - PMID: 26795593). All 5 were unrelated.

The phenotype consisted of DD (5/5 - moderate to severe in 4 for which this has been commented on), postnatal microcephaly, seizures, brachydactyly, with additional (cardiac, urogenital, etc) anomalies observed in few. Some partially overlapping facial features were also noted.

3 truncating variants as well as a missense one, all localizing within the last exon of the gene (NM_001102398.2 used as ref. although this exon is shared by all transcripts).

HNRNPR encodes heterogeneous nuclear ribonucleoprotein R, which is part of the spliceosome C. The latter functions in the nucleus to process and transport mRNA. Apart from splicing hnRNPs are also involved in other levels of gene regulation (PMID: 27215579). Some hnRNPs have been found in the cytoplasm in stress granules, aggregations of protein, RNAs and stalled initiation complexes that are formed as stress response upon oxidative insult and dissipate upon cessation of this insult.

Western blot in LCLs from affected individuals demonstrated the presence of the truncated protein as well as the full-length and short isoform (as expected by the variant localization).
As the C-terminal part has features of a "prion-like domain" (PrLD), critical for the formation of stress granules in the case of hnRNP-related disorders, comparison of fibroblasts from affected and healthy individuals revealed abnormal persistence of these granules in affected individuals following a recovery period, despite similar formation either at basal levels or under conditions of stress.

In line with a role of hnRNPs in splicing and gene regulation, RNA-Sequencing in fibroblasts from 2 affected individuals revealed abnormal splicing of some genes (eg. HOXA5, HOXB3, LHX9) and significant dysregulation of genes important for the development (upregulation of FOXG1, TBX1, several members of the HOX family and downregulation of LHX9, IRX3, etc) possibly contributing to the patient features.

Helbig et al. provide details on animal studies incl.expression in neural tissues (cerebrum and cerebellum), higher levels of expression early in the development (of both R1/R2 isoforms), etc (extensive discussion in the supplement with several articles cited).

HNRNPR is not associated with any phenotype in OMIM/G2P.

As a result this gene can be considered for inclusion as amber (developmental outcome not commented on sufficiently despite moderate/severe DD in most) or green.
Sources: Literature
Intellectual disability - microarray and sequencing v2.1015 HNRNPR Konstantinos Varvagiannis gene: HNRNPR was added
gene: HNRNPR was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: HNRNPR was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HNRNPR were set to 31079900; 26795593
Phenotypes for gene: HNRNPR were set to Global developmental delay; Intellectual disability; Seizures; Postnatal microcephaly; Short digit
Penetrance for gene: HNRNPR were set to unknown
Review for gene: HNRNPR was set to GREEN
Added comment: Duijkers et al. (2019 - PMID: 31079900) report on the phenotype of 4 individuals with de novo HNRNPR variants and provide additional information on a previously published case (Helbig et al, 2016 - PMID: 26795593). All 5 were unrelated.

The phenotype consisted of DD (5/5 - moderate to severe in 4 for which this has been commented on), postnatal microcephaly, seizures, brachydactyly, with additional (cardiac, urogenital, etc) anomalies observed in few. Some partially overlapping facial features were also noted.

3 truncating variants as well as a missense one, all localizing within the last exon of the gene (NM_001102398.2 used as ref. although this exon is shared by all transcripts).

HNRNPR encodes heterogeneous nuclear ribonucleoprotein R, which is part of the spliceosome C. The latter functions in the nucleus to process and transport mRNA. Apart from splicing hnRNPs are also involved in other levels of gene regulation (PMID: 27215579). Some hnRNPs have been found in the cytoplasm in stress granules, aggregations of protein, RNAs and stalled initiation complexes that are formed as stress response upon oxidative insult and dissipate upon cessation of this insult.

Western blot in LCLs from affected individuals demonstrated the presence of the truncated protein as well as the full-length and short isoform (as expected by the variant localization).
As the C-terminal part has features of a "prion-like domain" (PrLD), critical for the formation of stress granules in the case of hnRNP-related disorders, comparison of fibroblasts from affected and healthy individuals revealed abnormal persistence of these granules in affected individuals following a recovery period, despite similar formation either at basal levels or under conditions of stress.

In line with a role of hnRNPs in splicing and gene regulation, RNA-Sequencing in fibroblasts from 2 affected individuals revealed abnormal splicing of some genes (eg. HOXA5, HOXB3, LHX9) and significant dysregulation of genes important for the development (upregulation of FOXG1, TBX1, several members of the HOX family and downregulation of LHX9, IRX3, etc) possibly contributing to the patient features.

Helbig et al. provide details on animal studies incl.expression in neural tissues (cerebrum and cerebellum), higher levels of expression early in the development (of both R1/R2 isoforms), etc (extensive discussion in the supplement with several articles cited).

HNRNPR is not associated with any phenotype in OMIM/G2P.

As a result this gene can be considered for inclusion as amber (developmental outcome not commented on sufficiently despite moderate/severe DD in most).
Sources: Literature
Intellectual disability - microarray and sequencing v2.981 DONSON Catherine Snow Tag watchlist tag was added to gene: DONSON.
Intellectual disability - microarray and sequencing v2.978 PTRHD1 Catherine Snow Source Expert Review was added to PTRHD1.
Source Expert Review Amber was added to PTRHD1.
Added phenotypes Parkinsonism, Intellectual disability for gene: PTRHD1
Publications for gene PTRHD1 were changed from 30398675; 27134041; 29143421; 27753167 to 30398675; 27134041; 27753167; 29143421
Rating Changed from No List (delete) to Amber List (moderate evidence)
Intellectual disability - microarray and sequencing v2.978 DONSON Catherine Snow Source Expert Review was added to DONSON.
Source Expert Review Amber was added to DONSON.
Added phenotypes Microcephaly, short stature, and limb abnormalities 617604; Microcephaly-micromelia syndrome 251230 for gene: DONSON
Rating Changed from No List (delete) to Amber List (moderate evidence)
Intellectual disability - microarray and sequencing v2.884 CUX2 Sarah Leigh Added comment: Comment on list classification: Following personal comunication with Gemma Louise Carvill, the variant was confirmed as de novo in all nine cases mentioned in PMID 29630738.
Intellectual disability - microarray and sequencing v2.853 AP2M1 Konstantinos Varvagiannis gene: AP2M1 was added
gene: AP2M1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: AP2M1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: AP2M1 were set to 31104773
Phenotypes for gene: AP2M1 were set to Generalized hypotonia; Global developmental delay; Intellectual disability; Seizures; Ataxia; Autistic behavior
Penetrance for gene: AP2M1 were set to Complete
Review for gene: AP2M1 was set to GREEN
Added comment: Helbig et al. (2019 - PMID: 31104773) report on 4 individuals with developmental and epileptic encephalopathy due to a recurrent de novo AP2M1 missense variant (NM_004068.3:c.508C>T or p.Arg170Trp). Seizure types included atonic, myoclonic-atonic, absence seizures (with or without eyelid myoclonia), tonic-clonic etc. Hypotonia, developmental delay (prior to the onset of seizures at 1y 3m to 4y) and intellectual disability were observed in all four. Other features included ataxia (3/4) or autism spectrum disorder (2/4).

AP2M1 encodes the μ-subunit of the adaptor protein complex 2 (AP-2). AP2M1 is highly expressed in the CNS. The AP-2 complex is involved in clathrin-mediated endocytosis at the plasma mebrane of neurons and non-neuronal cells. This mechanism is important for recycling synaptic vesicle components at mammalian central synapses. Previous evidence suggests regulation of GABA and/or glutamate receptors at the neuronal surface by AP-2 (several references provided by Helbig et al.).

The authors provide evidence for impaired (reduced) clathrin-mediated endocytosis of transferrin in AP-2μ-depleted human HeLa cells upon plasmid-based re-expression of the Arg170Trp variant compaired to re-expression of WT. A similar defect was demonstrated upon comparison of the same process when WT and Arg170Trp re-expression was studied in primary astrocytes from conditional AP-2μ knockout mice.

Expression levels, protein stability, membrane recruitment and localization of the AP-2 complex in clathrin-coated pits were similar for the Arg170Trp variant and WT. As a result, the effect of the specific variant is suggested to be mediated by alteration of the AP-2 complex function (/impaired recognition of cargo membrane proteins) rather than haploinsufficiency.

AP2M1 is highly intolerant to missense / LoF variants with z-score and pLI in ExAC of 5.82 and 0.99 respectively.

As the authors discuss, heterozygous Ap2m1 mutant mice do not have an apparent phenotype. Homozygous mutant mice die before day 3.5 postcoitus, suggesting a critical role in early embryonic development (PMID 16227583 cited)

AP2M1 is currently not associated with any phenotype in OMIM / G2P.

As a result, this gene can be considered for inclusion in the epilepsy and ID panels probably as green (4 individuals with highly similar phenotype of DEE, relevance of phenotype and/or degree of ID, functional studies, etc) rather than amber (single recurrent variant - although this is also the case for other genes rated green).
Sources: Literature
Intellectual disability - microarray and sequencing v2.853 EED Louise Daugherty Phenotypes for gene: EED were changed from Cohen-Gibson syndrome 617561 to Cohen-Gibson syndrome, 617561; Human overgrowth syndrome type; Overgrowth with Intellectual disability
Intellectual disability - microarray and sequencing v2.834 UFM1 Rebecca Foulger commented on gene: UFM1: In 4 patients with profound global developmental delay from 2 Sudanese families, Nahorski et al, 2018 (PMID:29868776) identified a homozygous misense variant in the UFM1 gene (R81C). Functional assays showed the mutated protein had decreased ability to form a complex with UBA5 and UFC1, and suggested that a complete LOF allele would be embryonic lethal. Although the Sudanese families were not known to be related, they originate from the same village in Sudan, and families shared a haplotype, suggesting a founder effect. Nahorski et al, 2018 included a comparison of the phenotypes and UFM1 variants from the Hamilton et al., 2017 (PMID:28931644) in Table 2.
Intellectual disability - microarray and sequencing v2.798 P4HTM Konstantinos Varvagiannis gene: P4HTM was added
gene: P4HTM was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: P4HTM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: P4HTM were set to 30940925; 25078763
Phenotypes for gene: P4HTM were set to Central hypotonia; Muscular hypotonia; Global developmental delay; Intellectual disability; Seizures; Abnormality of the eye; Hypoventilation; Sleep apnea; Dysautonomia
Penetrance for gene: P4HTM were set to Complete
Review for gene: P4HTM was set to GREEN
Added comment: Rahikkala et al. (2019 - PMID: 30940925) report on 13 individuals from 5 families with biallelic pathogenic P4HTM variants. 6 of these individuals from a large consanguineous family from Finland were previously reported by the same group, although studies at the time had revealed a 11.5 Mb region of homozygosity with 3 genes within this interval considered to be candidate for the patients' phenotype (P4HTM, TKT, USP4) [Kaasinen et al. - PMID: 25078763].

Common features included Hypotonia (13/13), DD and ID (the latter present in 12/13 individuals with appropriate age for evaluation) and Eye Abnormalities, reason why the acronym HIDEA is suggested for the disorder. Epilepsy was observed in 10 individuals (10/13). Hypoventilation, sleep apnea and dysautonomia were additional features reported.

Muscle biopsies from 4 individuals had variable findings suggestive of disruption of normal mitochondrial function.

Finnish patients were homozygous for a SNV - possibly a founder variant in this population - predicted to lead to a missense change in the canonical transcript (NM_177938.2:c.1073G>A) but causing an in-frame loss of the complete exon 6 of another transcript (NM_177939.2).

The latter transcript (encoding a 502 aa protein) is the prevalent one in fibroblasts/myoblasts instead of the canonical one (563 aa). It is not known whether the canonical transcript is the prevalent in brain tissue although northern blot analysis in a previous study suggested presence of a 2.3 kb mRNA in brain instead of a 1.8 kb observed in other tissues, a finding which may be suggestive of expression of the canonical transcript. [Reviewer's note: In gnomAD based on the pext values from the GTEx, the noncanonical transcript appears to be prevalent in brain regions - https://gnomad.broadinstitute.org/gene/ENSG00000178467]

All variants reported in affected both transcripts. All 5 variants have been submitted to LOVD ( https://databases.lovd.nl/shared/variants/P4HTM?search_var_status=%3D%22Marked%22%7C%3D%22Public%22 - the first author appearing as the submitter).

Overexpression of wt and 3 mutants (His161Pro, Gln352*and Exon6del) in insect cells followed by analysis with SDS-PAGE and western blot revealed severly reduced/abolished fraction of soluble protein for the 3 studied variants suggesting improper protein folding.

Knockout of the gene in mice leads to retinal defects and/or visual impairment in line with eye abnormalites (nystagmus, strabismus, achromic retinal fundi or cortical blindness) being a prominent feature in affected individuals. Mouse studies suggest that this gene is also important for renal function, although kidney problems were not reported in any affected individual.

Overall loss-of-function is suggested to be the underlying mechanism.

P4HTM is not associated with any phenotype in OMIM, nor in G2P. This gene is not (at least commonly) included in gene panels for ID offered by diagnostic laboratories.

As a result P4HTM can be considered for inclusion in the ID and epilepsy panels probably as green (several affected individuals, degree of ID relevant) or amber.
Sources: Literature
Intellectual disability - microarray and sequencing v2.742 WARS2 Konstantinos Varvagiannis gene: WARS2 was added
gene: WARS2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: WARS2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WARS2 were set to 28236339; 28650581; 28905505; 29783990; 29120065
Phenotypes for gene: WARS2 were set to Neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures, 617710
Penetrance for gene: WARS2 were set to unknown
Review for gene: WARS2 was set to GREEN
gene: WARS2 was marked as current diagnostic
Added comment: Several individuals with biallelic pathogenic WARS2 variants have been published to date. DD and ID have been reported among others in most of the affected individuals (only the respective features are commented on below):

PMID: 28236339 (Musante et al. 2017) : 2 sibs compound heterozygous for NM_201263.2:c.325delA (p.Ser109Alafs*159) and c.37T>G (p.Trp13Gly). DD with ID were features in both.

PMID: 28650581 (Theisen et al. 2017) : The authors report on 1 individual with DD, ID and seizures was found to harbor in the compound heterozygous state NM_0158360.3:c.938A>T (p.K313M) and c.298_300delCTT (p.L100del).

PMID: 28905505 (Wortmann et al. 2017) : Details on 6 individuals from 5 unrelated families are provided. DD and ID were observed in 5 of these individuals (Fam 2-5). Severe, neonatal presentation was the case for an additional subject. Confirmed occurrence of epilepsy was reported for 3 individuals from 2 families (and suspected in a further one). Using NM_0158360.3 variants were the following :
Fam1 : c.91-8725_348+27113del36096 (p.Lys31_Glndel116) in trans with c.1045G>C (p.Val349Leu)
Fam2 : c.797del (p.Pro266Argfs*10) in trans with c.938A>T (p.Lys313met) [in 2 individuals]
Fam3 : c.231C>G (p.His77Gln) in trans with c.1054G>A (p.Glu352Lys)
Fam4 : c.532G>C (p.Val178Leu) in homozygous state
Fam5 : c.134G>T (p.Gly45Val) in trans with c.938A>T (p.Lys313Met)

PMID: 29783990 (Vantroys et al. 2018) : The authors report on 1 individual with DD, ID and seizures (among other features), compound heterozygous for c.797del (p.Pro266Argfs*10) and c.938A>T (p.Lys313met), similar to subjects from family 2 in PMID: 28905505.

PMID: 29120065 (Burke et al. 2018) : One 17-year-old boy with infantile-onset Parkinsonism but not DD/ID is described in this study. This individuals was found to harbor in the following variants in the compound heterozygous state: NM_015836.3: c.37T>G (p.Trp13Gly) and c.683C>G (p.Ser228Trp).

Probably 7 missense variants, 3 frameshift ones and an intragenic deletion have been reported in individuals with DD/ID (overview in fig 4. - in PMID: 29783990).
- p.Pro266Argfs*10 is located in the last exon of the gene (NM_015836.3).
- p.Trp13Gly (c.37T>G using either NM_201263.2 or NM_015836.3 as ref) has been commented to be a functional polymorphism 'uncovered' by the presence of a LoF allele in trans in affected individuals (AF : 0.003265 and 6 homozygotes in gnomAD)
- p.Lys313Met is possibly the most frequently reported variant as discussed by Vantroys et al.

WARS2 encodes mitochondrial tryptophanyl-tRNA synthetase (a cytoplasmic form is encoded by WARS). As commented in most of the articles, aminoacyl-tRNA synthetases (ARS) are a group of enzymes responsible for ligating amino acids to cognate tRNA molecules. Mutations in mitochondrial ARSs lead to impaired intramitochondrial translation affecting OXPHOS complexes (with mitochondrial-encoded subunits). Mutations in all 19 mitochondrial ARSs have been linked to disorders affecting different organ systems with variable severity and phenotypic presentation (summarized by Vantroys et al.).

Several lines of evidence have been provided to support a role for specific variants (eg. reduced WARS2 amounts upon Western blot, or impaired mitochondrial localization depending on the different variants and their effect) or WARS2 (expression in brain, impaired aminoacylation, abnormalities in OXPHOS enzymes/biosynthesis , etc).

Alternative causes (disorders of the differential diagnosis) have been ruled out on most - if not all - occasions.

As commented by Wortmann et al. the clinical spectrum appears to be broad as for the age of onset, features and clinical course (as happens to be the case for some other disorders due deficiencies of other ARSs). The same authors state that apart from elevated lactate which is suggestive of mitochondrial dysfunction, no specific metabolite was found to be altered in affected individuals.

Phenotypic variability even between individuals with the same genotype has been reported. Eg. severe neonatal presentation with lactic acidosis/hypoglycaemia was the case for 2 sibs in family 2 from Wortmann et al. but the clinical course was different for the subject reported by Vantroys et al. (DD/ID with seizure onset at the age of 6 yrs).

As a result, investigations (and selection of gene panel) may not be straightforward.

In addition consideration of this gene in the epilepsy panel seems to be relevant given that seizures were noted in at least 5 individuals (from 4 families - 28650581, 28905505, 29783990) and severe adverse effects of valproate administration occurred in the subject reported by Vantroys et al.
-----------
The associated phenotype in OMIM is Neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures (# 617710). WARS2 is not associated with any disorder in G2P.
This gene is included in panels for ID offered by some diagnostic laboratories.
-----------
As a result, WARS2 can be considered for inclusion in the ID and epilepsy panels as green (or amber).
Sources: Literature
Intellectual disability - microarray and sequencing v2.649 SLC35A3 Rebecca Foulger commented on gene: SLC35A3: The 2013 and 2016 ClinVar submissions SCV000699337.1 and SCV000108589.2 reported in the review by Konstantinos Varvagiannis link to the same publication: Edvardson et al. (2013, PMID:24031089).
Intellectual disability - microarray and sequencing v2.634 SET Rebecca Foulger Added comment: Comment on list classification: Updated rating from Amber to Green: Sufficient (>3) cases to support ID causation as noted in the review by Konstantinos Varvagiannis: 5 families (6 individuals) reported in PMID:29688601 (Stevens et al., 2018), plus 3 ID patients in the DDD study (PMID:28135719), including the variant found in the mother and son in PMID:29688601. Plus the large scale PMID:25356899 (Hamdan et al 2014) study.
Intellectual disability - microarray and sequencing v2.597 PLEKHG2 Konstantinos Varvagiannis gene: PLEKHG2 was added
gene: PLEKHG2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PLEKHG2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PLEKHG2 were set to 26539891; 26573021; 24001768
Phenotypes for gene: PLEKHG2 were set to Leukodystrophy and acquired microcephaly with or without dystonia, 616763
Penetrance for gene: PLEKHG2 were set to unknown
Review for gene: PLEKHG2 was set to AMBER
gene: PLEKHG2 was marked as current diagnostic
Added comment: Karaca et al. (2015 - PMID: 26539891) in a study of 128 - mostly consanguineous - families with neurogenetic disorders and brain malformations, identified an individual homozygous for a PLEKHG2 missense variant (NM_022835.2:c.1708G>A or p.Gly570Arg). This individual (BAB4830) had a similarly affected sib. Features included hypotonia, intellectual disability, microcephaly, cerebellar atrophy and nystagmus (description provided in supplement - Table S1). This variant has been submitted in ClinVar as likely pathogenic by the corresponding laboratory (SCV000537940.1).
-------
Edvardson et al. (2016 - PMID: 26573021) reported on 5 individuals from 2 unrelated consanguineous Palestinian families, harboring a missense variant in the homozygous state (NM_022835.2:c.610C>T or p.Arg204Trp - 1/5 was unavailable for testing).
Unaffected relatives here either heterozygous for this variant or homozygous for the reference allele.

Common features included hypotonia (5/5), DD/ID (5/5), postnatal microcephaly (5/5), dystonia (3/5), nystagmus (2/5) or seizures (1/5) [many of these similar to those reported by Karaca et al]. Brain MRI images were consistent with leukodystrophy and prolonged relaxation of dorsal tegmental tracts (similar findings were not commented by Karaca et al).

PLEKHG2 encodes a Rho guanine exchange factor (RhoGEF). RhoGEFs activate RhoGTPases through release of GDP and binding of GTP. Mutations in other RhoGEFs have been associated with neurodevelopmental disorders.

PLEKHG2 activity was shown to be significantly decreased in HEK293A cells transfected with R204W-PLEKHG2 when compared to tranfection with wt. Western blotting suggested that this was not the result of defective expression.

Using lymphoblastoid cell lines from peripheral B lymphocytes from individuals homozygous for R204W and controls, similar levels of expression were shown between the 2 groups.

As the authors note, PLEKHG2 is required for Rac- and Cdc42-stimulated actin polymerization in leukocytes (PMID cited: 24001768).

SDF1a-stimulated actin polymerization was studied in patient cells and was shown to be significantly impaired. In line with this actin polymerization was also impaired upon siRNA-mediated downregulation of PLEKHG2 expression in control cells.
-------
A subsequent submission of the Gly570Arg variant in ClinVar (2017 - SCV000609979.1 - same variant as the one reported by Karaca et al) reports this as a VUS.
-------
PLEKHG2 is associated with Leukodystrophy and acquired microcephaly with or without dystonia (616763) in OMIM.
This gene is not associated with any phenotype in G2P.
PLEKHG2 is included in gene panels for ID offered by some diagnostic laboratories.
-------
As a result, this gene could be considered for inclusion in this panel probably as amber (or green if the current evidence is considered to be sufficient).
Sources: Literature
Intellectual disability - microarray and sequencing v2.595 NUS1 Konstantinos Varvagiannis gene: NUS1 was added
gene: NUS1 was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: NUS1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: NUS1 were set to 25066056; 29100083; 24824130; 30348779
Phenotypes for gene: NUS1 were set to #617082 - ?Congenital disorder of glycosylation, type 1aa; #617831 - Mental retardation, autosomal dominant 55, with seizures; Abnormality of extrapyramidal motor function
Penetrance for gene: NUS1 were set to unknown
Review for gene: NUS1 was set to AMBER
gene: NUS1 was marked as current diagnostic
Added comment: Mutations in NUS1 have been implicated in recessive as well as dominant forms of ID (1 and 3 unrelated individuals respectively). The latter individuals presented with a developmental and epileptic encephalopathy with ID. At least 2 of these individuals had tremor and other movement disorders. A recent study proposes that NUS1 variants contribute to Parkinson's disease (1 individual with de novo variant affecting the canonical splice site, 26 additional individuals with missense variants - for which segregation studies where not however performed). ID is not commented on for these individuals.

NUS1 is included in the DD panel of G2P, associated with "Epilepsy and intellectual disability". (Monoallelic LoF variants / Disease confidence : probable). This gene is included in gene panels for ID offered by diagnostic laboratories (incl. Radboudumc). Associated phenotypes in OMIM and others discussed in the literature are summarized below (to my understanding).

As a result, NUS1 can be considered for inclusion in the ID panel probably as amber.
--------
Recessive - [MIM #617082 - ?Congenital disorder of glycosylation, type 1aa] :

Park et al. (2014 - PMID: 25066056) report on an individual homozygous for a NUS1 missense variant (R290H) and suggest that biallelic variants cause a congenital disorder of glycosylation.

The authors based in studies in yeast, mice and man provide evidence that NUS1 encodes the Nogo-B receptor (NgBR), a subunit of cis-prenyltransferase (cis-PTase), important for its activation. cis-PTase catalyzes one of the reactions for dolichol biosynthesis. Dolichol, in turn, is a carrier of glycans for N-linked glycosylation, O-mannosylation and GPI anchor biosynthesis.

Genetic defects in the dolichol biosynthetic pathway have been linked to other forms of CDG and/or other recessive or dominant neurodevelopmental disorders (eg. SRD5A3- and DHDDS-related disorders).

Similarities are provided at the cellular level between different organisms. Heterozygous knockout mice appear normal. Homozygosity is associated with embryonic lethality before E6.5. Conditional knockout in mouse embryonic fibroblasts led to accumulation of free cholesterol, decreased cis-PTase activity, and mannose incorporation in protein (the first & third rescued by transduction with lentiviral human NgBR).

In patient fibroblasts protein levels appeared similar to controls. Interaction with Nogo-B (and hCIT - the product of DHDDS) was not affected. As in mice, accumulation of free cholesterol was observed in cells, with decreased cis-PTase activity and mannose incorporation. LAMP-1 and ICAM-1 were hypoglycosylated in patient fibroblasts. Altered dolichol profiles in serum and urine were observed in carriers of the NUS1 variant, similarly to what described in individuals with DHDDS LoF variants.
----------
Dominant - [MIM #617831 - Mental retardation, autosomal dominant 55, with seizures].

Hamdan et al. (2017 - PMID: 29100083) report on 3 unrelated individuals with developmental and epileptic encephalopathy (onset: 10m - 2.5y) and ID. Two individuals harbored de novo LoF variants while a third subject had a deletion of exon 2. Movement disorders were noted in all 3 and included tremor (2 subjects) or ataxia (1 additional subject).

The authors cite a previous study on 6q22.1 deletions the critical region of which encompassed only NUS1 and the promoter of SLC35F1 (Szafranski et al. - PMID: 24824130). Haploinsufficiency is discussed as a possible mechanism (pLI of 0.87). A more severe phenotype due to dramatic reduction of NUS1 activity is proposed for the previously reported patient with CDG.
----------
Other:
Guo et al. (2018 - PMID: 30348779) suggest that NUS1 pathogenic variants contribute to Parkinson's disease. By performing WES in 39 individuals with early onset Parkinson's disease and their unaffected patients (and sibs) the authors identified 1 individual with de novo insertion affecting a NUS1 canonical splice site. RT-PCR demonstrated increased mRNA levels compared with controls. Skipping of 91 bp of exon 3 was demonstrated.

Study in 2 large sporadic PD-patient (N=1852+3237)/control cohorts (N=1565+2858) suggested association between NUS1 non-synonymous variants and PD (P=1.01e-5, OR:11.3). Other genetic causes of PD were excluded in 26 additional individuals with NUS1 missense variants.

Phenotypes of all 27 individuals are provided in Dataset_S04.

NUS1 has been found to be differentially expressed in PD mouse models.

RNAi-mediated knockdown of Tango14 (the Drosophila NUS1) resulted in impaired climbing activity, reduction in brain dopamine levels and abnormal apoptotic signals in brain.
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v2.595 STAG2 Konstantinos Varvagiannis gene: STAG2 was added
gene: STAG2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: STAG2 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: STAG2 were set to 29263825; 28296084; 30158690; 30447054; 19449417; 26443594; 25677961; 23637084; 25450604
Phenotypes for gene: STAG2 were set to Global developmental delay; Intellectual disability; Abnormality of head or neck; Microcephaly; Growth delay; Hearing impairment; Abnormal heart morphology
Penetrance for gene: STAG2 were set to unknown
Review for gene: STAG2 was set to GREEN
gene: STAG2 was marked as current diagnostic
Added comment: Several affected individuals (from at least 8 unrelated) families have been reported in the literature. The phenotype consists - among others - of DD/ID. STAG2 is located on long arm of chromosome X (Xq25). Based on these reports, both males and females can be affected.

Soardi et al. (2017 - PMID: 29263825) report an affected male belonging to a large pedigree with 4 other similarly affected males. The disorder in this pedigree followed a typical X-linked inheritance pattern. All affected males were hemizygous for a missense variant (NM_001042749.1:c.980G>A or p.Ser327Asn). Common phenotype consisted of moderate ID, short stature, sensory hearing loss and some similar facial features. Unaffected males did not harbor the variant. Heterozygous females were not affected. Co-segragation of the variant with the affected status under an X-linked model, appeared unlikely to have occurred by chance (probability of 1/131,072 - logarithm of odds score of 5.12).

Mullegama et al. (2017 - PMID: 28296084) report on an 8-year-old girl harboring a de novo nonsense variant in STAG2 (NM_001042749.1:c.205C>T or p.Arg69Ter). This individual presented - among others with - DD, microcephaly, growth delay, digit anomalies, particular facial features, and anomalies of other systems (eg. hearing loss, cardiac defect, etc). The authors summarize the features of 2 subjects from the DDD study as available in DECIPHER, without additional details. [Variants of these individuals NM_001042749.1:c.1913_1922del10 or p.(A638Vfs*10) / NM_001042749.1:c.1811G>A p.(R604Q)].

Yuan et al. (2018 - PMID: 30158690) report on 4 females with de novo LoF STAG2 variants as well as 1 male subject with a de novo missense one. DD (5/5) and ID (4/4) were features in all individuals for whom this information was available. One additional female had an intragenic STAG2 deletion, although this subject was not reported to have DD or ID (table S6 : microcephaly, seizures and facial phenotype). It is not known whether the deletion was inherited or had occurred as a de novo event. All variants from this study have been submitted in ClinVar (phenotype : STAG2-related disorder).

Mullegama et al. (2018 - PMID: 30447054) report on a 4-year-old male with DD, microcephaly, growth delay, digit anomalies due to a de novo missense STAG2 variant (c.3027A>T or p.Lys1009Asn). As discussed by the authors at the time of the study 33 males with Xq25 duplications and ID had been reported (PMIDs cited: 19449417, 26443594, 25677961, 23637084, 25450604).

Discussed in these articles :

STAG2 (or STAG1) is one of the 4 core proteins of the cohesin complex, the other 3 being SMC1A, SMC3 and RAD21. Mutations in genes encoding these proteins or their interactors (eg. NIBPL, HDAC8, ESCO2, etc) have been associated cohesinopathies, a group of multisystem developmental disorders (eg. Cornelia de Lange syndrome, Roberts/SC phocomelia, etc).

It has been commented that the phenotype of STAG2-related disorder presents overlap with other cohesinopathies (eg. DD, microcephaly and growth retardation, craniofacial features, anomalies of the digits, etc).

Decreased proportion of nuclei with premature sister chromatid separation compared to controls was found on one occasion (suggestive of tighter sister chromatid cohesion) [Mullegama-A]. Sister chromatid cohesion was not affected in another report [Soardi et al.].

Western blot demonstrated significant reduction of STAG2 levels for a nonsense variant [Mullegama-A]. Levels were not perturbed for a missense variant [Soardi et al.].

Upon immunofluorescence STAG2 presented normal (nuclear) localization for a missense variant for which this was studied [Soardi et al.].

Perturbation of the cell cycle profile (higher percentage of G2/M cells) was demonstrated for patient fibroblasts compared to controls on one occasion where this was studied. [Soardi et al.].

Microarray expression studies in patient fibroblasts demonstrated altered transcription (upregulation) of genes implicated in cell division, mitosis and DNA replication upon comparison with normal fibroblasts [Soardi et al.].

The effect of a missense variant on STAG2 binding to other cohesin subunits (SCC1, SMC1 and SMC3) and regulators was studied. Binding was found to be reduced in vivo (in HeLa cells) for SCC1 (its direct binding partner) as well as SMC1, SMC3 (possibly indirectly). Reduced STAG2 binding to cohesin regulators was also shown in vivo. However, in vitro studies were not suggestive of impaired binding of STAG2 to SCC1 (a finding difficult to explain) [Soardi et al.].

STAG2 appears to be intolerant to LoF variants (pLI of 1 in ExAC). Z-Score for missense variants is 5.11.

Mullegama et al. (B) comment that Xq25 duplications in males may be associated with milder phenotypes compared to intragenic variants. They further hypothesize that males are able to survive less damaging variants while females are able to survive more deleterious (eg. LoF) ones though with more severe phenotypes (similarity to the MECP2 model is discussed).
----------
STAG2 is not associated with any phenotype in OMIM.
In G2P this gene is associated with STAG2-related developmental delay with microcephaly and congenital anomalies (disease confidence : confirmed / Both DD and ID among the phenotypes assigned to this entry).
----------
STAG2 is included in gene panels for ID offered by some diagnostic laboratories.
----------
As a result, this gene can be considered for inclusion in the ID panel as green (or amber).
Sources: Literature
Intellectual disability - microarray and sequencing v2.588 RNF13 Konstantinos Varvagiannis gene: RNF13 was added
gene: RNF13 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: RNF13 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Phenotypes for gene: RNF13 were set to Congenital microcephaly; Feeding difficulties; Failure to thrive; Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Cortical visual impairment; Sensorineural hearing impairment
Penetrance for gene: RNF13 were set to unknown
Mode of pathogenicity for gene: RNF13 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: RNF13 was set to GREEN
Added comment: Edvardson et al. (doi.org/10.1016/j.ajhg.2018.11.018) report on 3 unrelated individuals with heterozygous de novo missense RNF13 variants.

Features included (rather borderline) congenital microcephaly, feeding difficulties, tone abnormalities, DD/ID (3/3), seizures (3/3), hearing loss and cortical visual impairment.

One individual harbored the p.Leu311Ser variant while 2 others the p.Leu312Pro.

RNF13 encodes a protein known to interact and activate IRE1a, an endoplasmatic reticulum (ER) stress sensor.

The 2 variants are predicted in silico not to affect the tertiary structure of the protein. Further to this, RNF13 is tolerant to LoF variants (pLI of 0 in ExAC). Therefore a gain-of-function mechanism was hypothesized for the 2 missense variants and demonstrated for the Leu311Ser:
- Protein levels were similar to controls upon Western blotting in patient fibroblasts.
- Enhanced IRE1a activation was demonstrated in patient cells when compared to controls, confirming gain-of-function.
- Increased activation (/ER stress), in turn, resulted in abnormally increased apoptosis similarly to what is observed in other neurological disorders.

Fibroblast/lymphoblast cells were not available from individuals with the Leu312Pro variant although a similar mechanism is presumed.

Although neurodegeneration is suggested by the above pathophysiologic mechanism, this is manifested by failure to achieve milestones (rather than eg. regression after a normal period of postnatal development / loss of milestones).
---------
RNF13 is not associated with any phenotype in OMIM, nor in G2P.
This gene is not commonly included in gene panels for ID offered by diagnostic laboratories.
---------
As a result, RNF13 can be considered for inclusion in this panel possibly as green (or amber).
Sources: Literature
Intellectual disability - microarray and sequencing v2.588 SLC35A3 Konstantinos Varvagiannis gene: SLC35A3 was added
gene: SLC35A3 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: SLC35A3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC35A3 were set to 24031089; 28328131; 28777481; 16344554
Phenotypes for gene: SLC35A3 were set to ?Arthrogryposis, mental retardation, and seizures (MIM 615553)
Penetrance for gene: SLC35A3 were set to Complete
Review for gene: SLC35A3 was set to GREEN
gene: SLC35A3 was marked as current diagnostic
Added comment: Biallelic pathogenic variants in SLC35A3 cause Arthrogryposis, mental retardation, and seizures (MIM 615553).
--------
Edvardson et al. (PMID: 24031089) report on 8 affected individuals from 3 nuclear Ashkenazi Jewish families. All harbored a nonsense [NM_012243.1:c.514C>T / p.(Gln172*)] as well as a missense variant [NM_012243.1:c.886A>G / p.(Ser296Gly)] in the compound heterozygous state. Most of the parents, who were heterozygous for the one or the other variant, were distantly related.

Common features included ASD (8/8), arthrogryposis (8/8), seizures (6/8) and intellectual disability (6/8 - variable degrees).

Upon cDNA studies, the (predicted) missense variant led to skipping of exon 8 and there was no normal size transcript (as would be expected for a variant of this type). Introduction of a premature stop codon due to this variant as well instability of the mRNA from the Gln172Ter allele was presumed to lead to absence of functional SLC35A3 protein.

Testing of 2045 Ashkenazi Jewish individuals revealed a carrier frequency of 1/205 for the missense variant in this community (with no occurrence of the nonsense variant).

SLC35A3 is a nucleotide sugar transporter that transports (uniquely) UDP-N-acetylglucosamine (UDP-GlcNAc) from the cytoplasm where it is synthesized to its site of use in the Golgi. Proper function of such transporters is essential for biosynthesis of glycoproteins, glycolipids and proteoglycans.

Although the transport of UDP-GlcNAc is mediated also by other less specific transporters, members of the SLC35 family, reduced transport was shown in patient fibroblasts compared to controls. In addition an abnormal N-glycan profile was shown in patient fibroblasts (but was not the case in serum).

Biallelic SLC35A3 mutations in cattle were previously shown to cause a Complex Vertebral Malformation (CVM) syndrome characterized by abnormal growth, vertebral and heart malformations as well as arthrogryposis (Thomsen et al. - PMID: 16344554). Arthrogryposis as well as some skeletal features observed in patients were similar to those of the animal model.
--------
Marini et al. (PMID: 28328131) report on 2 sibs compound heterozygous for a missense and a frameshift variant [NM_012243.2:c.73C>T or p.(Arg25Cys) and c.899_900delTTinsA or p.(Leu300Glnfs*6)]. Hypotonia, DD with ID, early-onset seizures and arthrogryposis were features in both. Severe scoliosis was also noted in the younger sib.
---------
Edmondson et al. (PMID: 28777481) report on a neonate (follow-up till the 21st day of life) with extensive vertebral anomalies (butterfly vertebrae, hemibertebrae, sagittal clefts, scoliosis), heart defects (PFO, PDA) and arthrogryposis. Presence of hypotonia or other neurologic features (eg. seizures) is not commented on. Conventional caryotype and SNP-array analysis were normal apart from the presence of ROH regions due to parental consanguinity. Exome sequencing revealed only a homozygous missense SNV [c.74G>T or p.(Arg25Leu) - NP_036375.1] which was supported by an abnormal N-glycan profile. As proposed for the bovine model (PMID: 16344554) and discussed in this article, similarity of the skeletal/congenital heart defects with those observed in Alagille syndrome might be due to some of the Notch functions being dependent upon N-acetylglucosamine modification.
---------
In ClinVar :

There is a further submission of p.Ser296Gly as pathogenic (SCV000699337.1 - 2016) apart from the submission by OMIM (SCV000108589.2 - 2013). The associated condition is Arthrogryposis, mental retardation, and seizures.

A frameshift variant [NM_012243.2(SLC35A3):c.680dup (p.Asp227Glufs)- SCV000826704.1 - April 2018] as well as an intragenic deletion [NC_000001.10:g.(?_100472570)_(100477109_?)del (GRCh37) - SCV000837123.1 - June 2018] have both been submitted as pathogenic, associated with Arthrogryposis, mental retardation, and seizures. (Note: due to the different submission dates, one can presume that these variants were found in different individuals).
---------
SLC35A3 is not associated with any phenotype in OMIM.
It is included in gene panels for ID offered by some diagnostic laboratories.
---------
As a result, this gene can be considered for inclusion in the ID panel probably as green (or amber)
[Consider upgrade of this gene to green in other panels (eg. CDGs, arthrogryposis, IEMs) and/or inclusion in other possibly relevant panels.]
Sources: Literature
Intellectual disability - microarray and sequencing v2.587 DONSON Konstantinos Varvagiannis gene: DONSON was added
gene: DONSON was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: DONSON was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DONSON were set to 28630177; 28191891
Phenotypes for gene: DONSON were set to Microcephaly, short stature, and limb abnormalities (MIM 617604); Microcephaly-micromelia syndrome (MIM 251230)
Penetrance for gene: DONSON were set to unknown
Review for gene: DONSON was set to AMBER
gene: DONSON was marked as current diagnostic
Added comment: It seems that the phenotypes related to DONSON biallelic mutations (PMIDs: 28630177, 28191891) can be extremely variable with pre-/perinatally lethal cases to variable degrees of microcephaly (-2.4 to -10.7 SD), short stature (several individuals with height within the normal percentiles), limb anomalies (many without such anomalies, or at least significant). Similarly, DD and more specifically ID has been observed in some patients (when it happened to be the case it was most commonly mild).

This is most evident in the supplementary information of PMID: 28191891, specifically the following table:
https://media.nature.com/original/nature-assets/ng/journal/v49/n4/extref/ng.3790-S2.xlsx

Clinical synopses for the DONSON-related phenotypes:
https://www.omim.org/clinicalSynopsis/table?mimNumber=617604,251230

The gene is not associated with any phenotype in G2P.

DONSON is included in gene panels for ID offered by diagnostic laboratories (incl. Radboudumc).

As a result, gene could be considered for inclusion in the ID panel probably as amber (or green) following further review and/or if the phenotype is though to be relevant.

[Consider also inclusion in other relevant panels apart from microcephaly, eg. limb disorders etc.]
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v2.584 ATP8B1 Konstantinos Varvagiannis commented on gene: ATP8B1: I could not find any evidence that ATP8B1 deficiency is associated with DD/ID.

Kinsley et al. (2014 - PMID: 20301474) review the spectrum of the disorder. DD/ID is not among the features and not mentioned among extrahepatic manifestations. The only possibly relevant complication is vitamin E deficiency which can lead to neurologic manifestations (but not of this type).

Bull and Thompson (2018 - PMID: 30266155) also provide a review. DD/ID is not a feature, nor is it included in extrahepatic manifestations.

This was similarly the case in a previous review on PFIC1 by Paulusma et al. (2010 - PMID: 20422494).

The only potentially relevant article (Li et al. - PMID: 26382629) comments on the possibility of congenital hypothyroidism which seemed to be the case for 3 of 13 patients with ATP8B1 deficiency (2 further out of 13 had sub-clinical hypothyroidism). For the 3 individuals with primary hypothyroidism TSH and free thyroxine measurements were available at the ages of 2, 0 and 3 months. Among these patients however, one did not show biparental inheritance of the ATP8B1 variants as expected (both of maternal origin). For the 2 patients with subclinical hypothyroidism TSH was measured at the ages of 3 and 16 months. The authors suggest that congenital hypoparathyroidism - which in turn may affect cognitive development - may be a manifestation of ATP8B1 deficiency and as a result thyroid function should be monitored in these patients. [However testing for congenital hypothyroidism is commonly part of the newborn screening].

The ATP8B1-related phenotypes in OMIM include the following:
- Cholestasis, benign recurrent intrahepatic, MIM 243300 (AR)
- Cholestasis, intrahepatic, of pregnancy, 1, MIM 147480 (AD)
- Cholestasis, progressive familial intrahepatic 1, MIM 211600 (AR)

In G2P this gene is included in the DD panel, associated with ATP8B1-Related intrahepatic cholestasis.

ATP8B1 is not commonly included in gene panels for intellectual disability although this seems to be the case for few laboratories.

As a result, this gene could possibly be demoted to red.
Intellectual disability - microarray and sequencing v2.584 PTRHD1 Konstantinos Varvagiannis gene: PTRHD1 was added
gene: PTRHD1 was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: PTRHD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTRHD1 were set to 30398675; 27134041; 29143421; 27753167
Phenotypes for gene: PTRHD1 were set to Parkinsonism; Intellectual disability
Penetrance for gene: PTRHD1 were set to Complete
Review for gene: PTRHD1 was set to AMBER
gene: PTRHD1 was marked as current diagnostic
Added comment: 7 individuals with biallelic PTRHD1 mutations from 3 pedigrees have been reported. The phenotype in all consisted of early-onset Parkinsonism with intellectual disability (overview in Table 1 - PMID: 30398675).

Jaberi et al. (PMID: 27134041) first reported on 2 sibs born to consanguineous Iranian parents. Both presented with parkinsonism with ID. After homozygosity mapping and exome sequencing, one variant in PTRHD1 (NM_001013663.1:c.155G>A or p.Cys52Tyr) as well as another variant in ADORA1 were the only candidates for the patients phenotype. At the time, the authors favored ADORA1 as the causative gene for their patients' phenotype but could not exclude pathogenicity of PTRHD1.

Khodadadi et al. (PMID: 27753167) published on 2 additional sibs from Iran with a similar phenotype. These individuals - born to consanguineous parents - were homozygous for a further PTRHD1 missense variant (p.His53Tyr) which is proximal to the variant reported by Jaberi et al.

This led the authors of the first publication to acknowledge that PTRHD1 was probably responsible for their patients' phenotype (PMID: 29143421). [A recent study of exome sequencing data of a Parkinson disease 1214-patient cohort failed to find any case explained by biallelic ADORA1 mutations - PMID: 27987235].

The variants reported in these 2 publications are classified as VUS in OMIM (last update : 02/23/2017).

Kuipers et al. (PMID: 30398675) report on 3 additional individuals of African origin with identical phenotype. These individuals, whose parents originated from an isolated african community, were homozygous for a frameshift PTRHD1 deletion (c.169_196del or p.Ala57Argfs*26). This variant is rare in gnomAD (MAF of 0.018% overall or 0.15% in the African subpopulation). Alternative causes of PD / parkinsonism were previously excluded.

The phenotype of all reported individuals is summarized in Table 1 of this article.

PTRHD1 is not assocated with any phenotype in OMIM nor in G2P.

This gene is included in the gene panel for ID, offered by Radboudumc.

Therefore, this gene can be considered for inclusion in this panel as amber or green.

[Please consider inclusion of this gene in the Parkinson Disease and Complex Parkinsonism gene panel].
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v2.579 RPIA Konstantinos Varvagiannis gene: RPIA was added
gene: RPIA was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: RPIA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RPIA were set to 14988808; 20499043; 28801340; 30088433
Phenotypes for gene: RPIA were set to Ribose 5-phosphate isomerase deficiency, MIM 608611.
Penetrance for gene: RPIA were set to unknown
Review for gene: RPIA was set to GREEN
gene: RPIA was marked as current diagnostic
Added comment: Biallelic pathogenic variants in RPIA cause Ribose 5-phosphate isomerase deficiency, MIM 608611.

PMID: 14988808 is the first report on the disorder with molecular (incl. genetic) confirmation of the diagnosis. A patient initially investigated for early developmental delay, leukoencephalopathy, seizures with onset at 4 years, with subsequent neurologic regression and peripheral neuropathy at the age of 7, was suspected to have a disorder of the pentose phosphate pathway on the basis of highly elevated polyols on brain MRS and body fluid analysis. Reduced ribose 5-phosphate isomerase activity was shown in fibroblasts. Genetic testing demonstrated the presence of a missense (NM_144563.2:c.404C>T / NP_653164.2:p.Ala135Val - previously referred to as A61V) as well as a frameshift variant (NM_144563.2:c.762delG / NP_653164.2:p.Asn255Ilefs). Additional extensive supportive functional studies were published a few years later (PMID: 20499043). [This patient was initially described in PMID: 10589548].

PMID: 28801340 is a report on a second patient. This individual presented with delayed early development (independent walking and speech achieved at 2 and 5 years respectively), seizures and regression at the age of 7 with MRI white matter abnormalities. Review of magnetic resonance spectroscopy (MRS) was suggestive of elevated polyols (arabitol and ribitol). In line with this, genetic testing revealed a homozygous missense variant in RPIA (NM_144563.2:c.592T>C or p.Phe198Leu). Urine analysis confirmed elevated excretion of polyols, thus confirming the diagnosis.

PMID: 30088433 reports on a boy with neonatal onset leukoencephalopathy and developmental delay having undergone early metabolic testing and aCGH (the latter at the age of 16 months). Persistance of his delay motivated exome sequencing at the age of approx. 4.5 years which demonstrated 2 RPIA variants (NM_144563.2:c.253G>A or p.Ala85Thr and NM_144563.2:c.347-1G>A). Measurement of ribitol and arabitol in urine demonstrated significant elevations (>20x) consistent with this diagnosis.

RPIA is included in gene panels for intellectual disability offered by various diagnostic laboratories.

As a result this gene can be considered for inclusion in this panel as green (or amber).
Sources: Literature
Intellectual disability - microarray and sequencing v2.562 RALA Konstantinos Varvagiannis gene: RALA was added
gene: RALA was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: RALA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Phenotypes for gene: RALA were set to Global developmental delay; Intellectual disability; Seizures; Abnormality of nervous system morphology
Penetrance for gene: RALA were set to unknown
Mode of pathogenicity for gene: RALA was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: RALA was set to GREEN
Added comment: Hiatt et al. (doi.org/10.1371/journal.pgen.1007671) report on 11 individuals (incl. a pair of monozygotic twins) from 10 unrelated families, most (10/11) with de novo mutations in RALA.

DD/ID was a prominent feature (the authors note that ID was specifically noted in 8 but could not be excluded in 3 further individuals who appear to be very young in the table). Structural brain anomalies (9/11), seizures (6/11) and common facial features were also noted.

RALA belongs to the RAS superfamily of small GTPases.

5 different de novo missense variants and 1 in-frame deletion, all within a GTP/GDP binding region of RALA (although appart in the protein primary structure) were observed. 7 occurrences of missense variants concerned Val25 and Lys128 (V25M, V25L, K128R), one Asp130 (D130G) and a further one Ser157 (S157A). The in-frame deletion concerned Ala158.

Missense variants in corresponding positions of RAS proteins (HRAS/KRAS/NRAS) have been reported in RASopathies, while the authors observed some phenotypic overlap with the latter group of disorders (DD/ID, growth delay, macrocephaly, high forehead and position of ears).

Functional studies demonstrated reduction in GTPase activity (for all variants) and altered RALA effector binding (for most reduction - in the case of S157A, increase).

Several lines of evidence are provided to show that alteration of the GTP/GTP-binding rather than a dosage effect is considered the likely mechanism. RALA is depleted in missense mutations in its GTP/GDP binding domain.

For these reasons and others (segregation studies not possible, variant observed 2x in Bravo database, phenotypic differences compared to the rest of the cohort, ROH suggesting parental consanguinity in the specific individual) the single nonsense variant (R176X) reported in the study is considered a VUS.

As a result, this gene can be considered for inclusion in this panel as green.
Sources: Literature
Intellectual disability - microarray and sequencing v2.556 DDX59 Konstantinos Varvagiannis gene: DDX59 was added
gene: DDX59 was added to Intellectual disability. Sources: Literature,Expert Review
Mode of inheritance for gene: DDX59 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DDX59 were set to 23972372; 28711741; 29127725
Phenotypes for gene: DDX59 were set to Orofaciodigital syndrome V, 174300
Penetrance for gene: DDX59 were set to Complete
Review for gene: DDX59 was set to GREEN
Added comment: Biallelic mutations in DDX59 cause Orofaciodigital syndrome V, 174300.

PMID: 23972372 reports on 6 individuals from 2 consanguineous Arab families. All 6 presented with palatal anomalies (cleft palate or bifid uvula), lobulated tongue, facial anomalies (frontal bossing and hypertelorism) as well as intellectual disability.

Individuals from the first family were homozygous for the Val367Gly (NM_001031725.4:c.1100T>G) variant while those from the second were homozygous for Gly534Arg (NM_001031725.4:c.1600G>A), both predicted to be pathogenic in silico. Immunoblot demonstrated reduced levels of the Val367Gly variant in patient fibroblasts (the other variant was probably not tested). Ddx59 was shown to be expressed in lips, palatal shelves and developing limb buds of mouse embryos.

PMID: 28711741 describes 3 further patients (from two consanguineous Pakistani families), presenting the cardinal features of orofaciodigital syndrome (though polydactyly was only reported in one of the three). Developmental delay was reported in all (in the first family one of the sibs had more severe delay with no speech at the age of 7 years, in the patient from the other family speech was limited to 2 words at school age). Affected individuals from both families were found to harbor a SNV leading to loss of a stop codon, thus extending the reading frame by 21 codons.

PMID: 29127725 reports on two sibs with a diagnosis of orofaciodigital syndrome born to non-consanguineous parents. ID was a feature in both. These individuals were homozygous for a frameshift variant. Reverse transcription PCR/semiquantitative PCR demonstrated reduction of the mutant transcript compared to the levels in wt controls (suggestive of incomplete NMD). Functional studies showed possible perturbation of the Sonic Hedgehog pathway. DDX59 expression in CNS from control post-mortem human brains was confirmed to be high (based on data generated in a previous study). Studies in Drosophila suggest reduced lifespan and neuronal defects secondary to mutations in mahe (the Drosophila homolog of DDX59).

As a result this gene can be considered for inclusion in the ID panel as green.
Sources: Literature, Expert Review
Intellectual disability - microarray and sequencing v2.550 UFM1 Konstantinos Varvagiannis gene: UFM1 was added
gene: UFM1 was added to Intellectual disability. Sources: Literature,Expert Review
Mode of inheritance for gene: UFM1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: UFM1 were set to 28931644; 29868776
Phenotypes for gene: UFM1 were set to Leukodystrophy hypomyelinating 14, 617899
Penetrance for gene: UFM1 were set to Complete
Review for gene: UFM1 was set to GREEN
Added comment: Biallelic UFM1 mutations cause Leukodystrophy hypomyelinating 14, MIM 617899.

PMID: 28931644 is the first report on 16 individuals from 14 families with shared Roma ethnic background. All subjects were found to harbor a UFM1 promoter 3 basepair deletion in the homozygous state.

All patients demonstrated a severe phenotype including lack of development and severe epileptic encephalopathy while their MRI images demonstrated hypomyelination with atrophy of the basal ganglia and the cerebellum.

The promoter deletion was detected by exome sequencing. Previously a 0.8 Mb homozygous region was identified to be shared by all the patients in whom a SNP array was performed. Alternative causes, notably TUBB4A mutations and deletions/duplications were excluded. 3 individuals had Sanger sequencing of all coding regions within the homozygous interval to rule out other - eventually missed - variants.

PMID: 29868776 reports 4 additional individuals from 2 consanguineous families (one from Ethiopia, for the other this was not specified). All 4 patients were homozygous for the c.241C>T (NM_016617.3) or p.(Arg81Cys) variant which was shown to be hypomorphic upon functional studies.

The phenotype consisted of developmental delay (4/4 or 20/20 including the patients from the previous report with which comparison is made in table 2 of the article) with microcephaly (4/4 or 20/20) and seizures (4/4 or 16/20) as well as MRI abnormalities. Failure to thrive and/or short stature were also among the most common features.

UFM1 (as well as UFC1 also discussed in the same article) participate in ufmylation, with mutations in other enzymes of the same process (notably UBA5 - gene rated Green in the ID and epilepsy panels) having already been described in neurodevelopmental disorders.

As a result, this gene can be considered for inclusion in this panel as green (or amber).
Sources: Literature, Expert Review
Intellectual disability - microarray and sequencing v2.468 SON Louise Daugherty Source Victorian Clinical Genetics Services was added to SON.
Intellectual disability - microarray and sequencing SON BRIDGE consortium edited their review of SON
Intellectual disability - microarray and sequencing SON Louise Daugherty classified SON as amber
Intellectual disability - microarray and sequencing SON Louise Daugherty commented on SON
Intellectual disability - microarray and sequencing SON BRIDGE consortium reviewed SON