Activity

Filter

Cancel
Date Panel Item Activity
62 actions
Intellectual disability - microarray and sequencing v5.531 GAN Arina Puzriakova changed review comment from: Comment on list classification: Biallelic variants in the GAN gene cause giant axonal neuropathy, characterised by abnormalities in the peripheral and central nervous systems. Though extent of CNS involvement can vary, intellectual disability has been reported in at least 3 unrelated cases to date (PMID: 18595793; 19231187). Therefore, this gene should be promoted to Green at the next GMS panel update.; to: Comment on list classification: Biallelic variants in the GAN gene cause giant axonal neuropathy, characterised by abnormalities in the peripheral and central nervous systems. Though extent of CNS involvement can vary, intellectual disability has been reported in at least 3 unrelated cases (PMID: 18595793; 19231187). Therefore, this gene should be promoted to Green at the next GMS panel update.
Intellectual disability - microarray and sequencing v5.531 GAN Arina Puzriakova Tag Q2_24_promote_green tag was added to gene: GAN.
Tag Q2_24_NHS_review tag was added to gene: GAN.
Intellectual disability - microarray and sequencing v5.531 GAN Arina Puzriakova Publications for gene: GAN were set to
Intellectual disability - microarray and sequencing v5.530 GAN Arina Puzriakova Classified gene: GAN as Amber List (moderate evidence)
Intellectual disability - microarray and sequencing v5.530 GAN Arina Puzriakova Added comment: Comment on list classification: Biallelic variants in the GAN gene cause giant axonal neuropathy, characterised by abnormalities in the peripheral and central nervous systems. Though extent of CNS involvement can vary, intellectual disability has been reported in at least 3 unrelated cases to date (PMID: 18595793; 19231187). Therefore, this gene should be promoted to Green at the next GMS panel update.
Intellectual disability - microarray and sequencing v5.530 GAN Arina Puzriakova Gene: gan has been classified as Amber List (Moderate Evidence).
Intellectual disability - microarray and sequencing v5.529 GAN Arina Puzriakova Mode of inheritance for gene: GAN was changed from to BIALLELIC, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v5.528 GAN Arina Puzriakova Phenotypes for gene: GAN were changed from to Giant axonal neuropathy-1, OMIM:256850
Intellectual disability - microarray and sequencing v5.414 GAN Tracy Lester reviewed gene: GAN: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301315; Phenotypes: Intellectual disability, developmental delay, neuropathy, hypotonia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability - microarray and sequencing v5.255 CMIP Tord Jonson changed review comment from: CMIP (MANE Select NM_198390) loss of function-variants (deletions) have been reported in two studies that describes patients with syndromic ASD and co-morbid gastrointestinal issues. See Van der Aa et al., 2012, Haploinsufficiency of CMIP in a girl with autism spectrum disorder and developmental delay due to a de novo deletion on chromosome 16q23.2 (PMID: 22689534); and Luo et al., 2017, CMIP haploinsufficiency in two patients with autism spectrum disorder and co-occurring gastrointestinal issues (PMID: 28504353). In addition, we have observed a local case with a de novo deletion encompassing only the genes CMIP and GAN in a patient with gastrostomy, intellectual disability, autism, ADHD and seizures.
Sources: Other; to: CMIP (MANE Select NM_198390) loss of function-variants (deletions) have been reported in two studies that describes patients with syndromic ASD and co-morbid gastrointestinal issues. See Van der Aa et al., 2012, Haploinsufficiency of CMIP in a girl with autism spectrum disorder and developmental delay due to a de novo deletion on chromosome 16q23.2 (PMID: 22689534); and Luo et al., 2017, CMIP haploinsufficiency in two patients with autism spectrum disorder and co-occurring gastrointestinal issues (PMID: 28504353). In addition, we have observed a local case with a de novo deletion encompassing only the genes CMIP and GAN in a patient with gastrostomy, intellectual disability, autism, ADHD and seizures.
Intellectual disability - microarray and sequencing v5.255 CMIP Tord Jonson gene: CMIP was added
gene: CMIP was added to Intellectual disability - microarray and sequencing. Sources: Other
Mode of inheritance for gene: CMIP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CMIP were set to PMID: 22689534; 28504353
Phenotypes for gene: CMIP were set to HP:0012759; HP:0000717; HP:0007018; HP:0001250; HP:0011471
Penetrance for gene: CMIP were set to unknown
Review for gene: CMIP was set to GREEN
gene: CMIP was marked as current diagnostic
Added comment: CMIP (MANE Select NM_198390) loss of function-variants (deletions) have been reported in two studies that describes patients with syndromic ASD and co-morbid gastrointestinal issues. See Van der Aa et al., 2012, Haploinsufficiency of CMIP in a girl with autism spectrum disorder and developmental delay due to a de novo deletion on chromosome 16q23.2 (PMID: 22689534); and Luo et al., 2017, CMIP haploinsufficiency in two patients with autism spectrum disorder and co-occurring gastrointestinal issues (PMID: 28504353). In addition, we have observed a local case with a de novo deletion encompassing only the genes CMIP and GAN in a patient with gastrostomy, intellectual disability, autism, ADHD and seizures.
Sources: Other
Intellectual disability - microarray and sequencing v3.1657 KAT8 Arina Puzriakova Phenotypes for gene: KAT8 were changed from Global developmental delay; Intellectual disability; Seizures; Abnormality of vision; Feeding difficulties; Abnormality of the cardiovascular system; Autism to Li-Ghorgani-Weisz-Hubshman syndrome, OMIM:618974; Global developmental delay; Intellectual disability; Seizures; Abnormality of vision; Feeding difficulties; Abnormality of the cardiovascular system; Autism
Intellectual disability - microarray and sequencing v3.1628 PPFIBP1 Konstantinos Varvagiannis gene: PPFIBP1 was added
gene: PPFIBP1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PPFIBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PPFIBP1 were set to 35830857; 30214071
Phenotypes for gene: PPFIBP1 were set to Global developmental delay; Intellectual disability; Microcephaly; Seizures; Abnormality of brain morphology; Abnormality of the cerebral white matter; Cerebral calcification; Abnormal cortical gyration; Hypertonia; Spastic tetraplegia; Generalized hypotonia; Small for gestational age; Growth delay; Failure to thrive; Feeding difficulties; abnormal heart morphology; Hearing abnormality; Cryptorchidism; Abnormality of vision
Penetrance for gene: PPFIBP1 were set to Complete
Review for gene: PPFIBP1 was set to GREEN
Added comment: Consider inclusion with green rating in the ID, epilepsy as well as other likely relevant gene panels (microcephaly, white matter disorders, corpus callosum abnormalities, intracerebral calficication disorders, malformations of cortical development, hereditary spastic paraplegia, growth failure in early childhood, etc) based on the summary below.

----

Rosenhahn et al (2022 - PMID: 35830857) describe the phenotype of 16 individuals - belonging to 12 unrelated families - with biallelic PPFIBP1 pathogenic variants. Most (14/16) were born to consanguineous parents. One of these families was previously reported by Shaheen et al (2019 - PMID: 30214071) who first identified PPFIBP1 as a candidate gene for congenital microcephaly. In the current study, Rosenhahn also identified a fetus homozygous for a missense variant and similar features.

All individuals presented global DD/ID (16/16 - in 15 cases profound/severe) and epilepsy (16/16 - onset 1d-4y / median 2m - focal seizures in 11/16, epileptic spams in 7/16, generalized onset in 7/16, myoclonic in 6/16 - drug-resistant : 13/16). Almost all (15/16) had microcephaly, commonly congenital (9/16) and progressive (11/16). Other neurological findings included hypertonia (10/16), spastic tetraplegia (6/16), hypotonia (5/16), dystonic movements (3/16) or nystagmus (4/16). Brain abnormalities were identified in all investigated with MRI and included leukoencephalopathy (11/14) mostly periventricular, abnormal cortex morphology (7/14 - polymicrogyria 1, increased cortical thickness 4, pachygyria 3), cortical atrophy, corpus callosum hypoplasia (7/14). Intracranial calcifications were identified in all (9/9) investigated with CT scan. Abnormal growth was reported for several (SGA in 9/16, FTT 8/16, short stature 7/16) often associated with feeding difficulties (7/16). Other features incl. abnormal hearing (4/16), congenital heart defects (7/16), ophthalmologic findings (8/16), undescended testes (3/10). There were no overlapping facial features.

The fetus displayed similar features incl. SGA, microcephaly, intracranial calcifications.

Investigations incl. exome/genome sequencing (singleton or trio) with Sanger for confirmation/segregation of variants where necessary. Variable previous investigations incl. metabolic screening, TORCH screening, chromosomal studies (CMA) are mentioned in the supplement and were non-diagnostic. Additional candidate variants were identified in few cases although cases with plausible dual diagnoses (e.g. ind14) were not included in the overall phenotypic description.

9 pLoF variants (nonsense, frameshift, 1 splicing) predicted to lead to NMD were identified. There were no functional studies performed.
The missense variant c.2177G>T / p.Gly726Val (NM_003622.4) was predicted deleterious by in silico tools while the AA change causing severe steric problems upon modelling.

PPFIBP1 encodes PPFIA-binding protein 1 also known as liprin-β1. As the authors discuss: The liprin family of proteins comprises liprins α1 to 4 and liprin β1 and β2 in mammals. Liprin β1 is known to homodimerize and heterodimerize with α-liprins. In fibroblast cultures liprins β1 and α1 colocalize to cell membrane and periphery of focal adhesions. Members of the liprin-α fam. are scaffold proteins playing a role in synapse formation/signaling and axonal transport.

A ko model of the PPFIBP1 ortholog in C.elegans displayed abnormal locomotion behavior. In Drosophila, null-allele mutants resulted in altered axon outgrowth and synapse formation of R7 photoreceptors and reduced neuromuscular junction size (Refs provided in article).

Using a PPFIBP1/hlb-1 ko C.elegans model the authors demonstrated defects in spontaneous and light-induced behavior. Sensitivity of the worms to an acetylcholinesterase inhibitor (aldicarb) was suggestive of a presynaptic defect.

----

There is currently no PPFIBP1 - associated phenotype in OMIM / G2P.
SysNDD lists PPFIBP1 among the ID genes (limited evidence based on the 3 sibs reported by Shaheen et al, 2019 - PMID: 30214071).
In PanelApp Australia the gene is listed with green rating for ID, epilepsy, microcephaly based on the medRxiv pre-print.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1606 ATP6V0A1 Mike Spiller changed review comment from: Bott et al 2021 PMID: 34909687

17 individuals from 14 unrelated families

12 individuals with de novo variants in ATP6V0A1.
Associated with severe intellectual disability and refractory seizures following initial normal development.
1 stillborn; other 11 all have intellectual disability and slowing of developmental progression. 10 have epilepsy, microcephaly also common and MRI abnormalities in some.
Dysmorphic features less common.

7/12 have recurrent hotspot variant NM_001130021.3 c.2219G>A R740Q.

Biallelic inheritance also suggested - 2 separate families (apparently unrelated by IBD analysis) with affected individuals compound heterozygous for c.445delG p.(Glu149fs) and c.1483C>T p.(Arg495Trp).
Phenotype of ID, epilepsy, but with ataxia and cerebellar anomalies.

Gene involved in proton transport into organelles. Cell lines stably expressing R740Q show reduced endolysosome acidification consistent with reduced transporter function.
Supported by data showing impaired maturation of Cathepsin D (requires acidic pH).
Also refer to studies of yeast homologue showing that R735 (corresponds to human R740) is essential for proton transport function (Kawasaki-Nishi et al 2001 PMID: 11592980).

Strong evidence that pathogenic missense variants in this gene cause severe ID/epilepsy, Less certain for biallelic inheritance.
Recommend upgrade to Green for ID and epilepsy.; to: Bott et al 2021 PMID: 34909687

17 individuals from 14 unrelated families

12 individuals with de novo variants in ATP6V0A1.
Associated with severe intellectual disability and refractory seizures following initial normal development.
1 stillborn; other 11 all have intellectual disability and slowing of developmental progression. 10 have epilepsy, microcephaly also common and MRI abnormalities in some.
Dysmorphic features less common.

7/12 have recurrent hotspot variant NM_001130021.3 c.2219G>A R740Q.

Biallelic inheritance also suggested - 2 separate families (apparently unrelated by IBD analysis) with affected individuals compound heterozygous for c.445delG p.(Glu149fs) and c.1483C>T p.(Arg495Trp).
Phenotype of ID, epilepsy, but with ataxia and cerebellar anomalies.

Gene involved in proton transport into organelles. Cell lines stably expressing R740Q show reduced endolysosome acidification consistent with reduced transporter function.
Supported by data showing impaired maturation of Cathepsin D (requires acidic pH).
Also refer to studies of yeast homologue showing that R735 (corresponds to human R740) is essential for proton transport function (Kawasaki-Nishi et al 2001 PMID: 11592980).

Strong evidence that heterozygous pathogenic missense variants in this gene cause severe ID/epilepsy, Less certain for biallelic inheritance.
Recommend upgrade to Green for ID and epilepsy.
Intellectual disability - microarray and sequencing v3.1580 DROSHA Konstantinos Varvagiannis gene: DROSHA was added
gene: DROSHA was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DROSHA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DROSHA were set to 35405010
Phenotypes for gene: DROSHA were set to Global developmental delay; Intellectual disability; Seizures; Cerebral white matter atrophy; Abnormality of the corpus callosum; Abnormality of movement; Stereotypic behavior; Abnormality of head or neck; Short foot
Penetrance for gene: DROSHA were set to unknown
Mode of pathogenicity for gene: DROSHA was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: DROSHA was set to AMBER
Added comment: Profound DD, ID and seizures have been reported in 2 unrelated subjects with de novo missense variants. The gene has a role in miRNA biogenesis. Both variants described have been shown to have effect on DROSHA's function in Drosophila / C. elegans (partial loss-of-function vs possibility of antimorphic effect discussed || in gnomAD several individuals with LoF alleles / Z=3.98 – pLI : 0.09).

There is currently no DROSHA-related phenotype in OMIM, G2P, SysNDD. In PanelApp Australia the gene has amber rating in genetic epilepsy and microcephaly panels (not currently included in the ID one).

Consider inclusion in the current panel with amber rating. Also consider inclusion in other possibly relevant panels (given postnatal microcephaly, abn. corpus callosum, progressive white matter atrophy, etc) [ NOT added ]

-----

Barish, Senturk, Schoch et al (2022 - PMID: 35405010) describe the phenotype of 2 unrelated individuals with de novo missense DROSHA variants.

Features included generalized hypotonia, postnatal microcephaly (-2,6 and -6 SD), feeding difficulties, profound DD and ID, seizures, abnormal movements (choreoathetosis / stereotypic movements), variable respiratory symptoms (in one case episodes of hyperventilation/apnea), cardiovascular or skeletal findings. Brain MRI demonstrated white matter atrophy and thin corpus callosum in both. Brachycephaly with broad face as well as short feet were also among the shared features.

Both were investigated by trio ES/GS which were otherwise non diagnostic and without other candidate variants. The 1st individual harbored a de novo htz missense DROSHA variant (c.3656A>G/p.Asp1219Gly) while the 2nd subject had another missense variant (c.4024C>T/p.Arg1342Trp) [NM_013235.4] confirmed by Sanger seq.

DROSHA (on 5p13.3) encodes a ribonuclease, subunit of the microprocessor complex, involved in miRNA biogenesis. Specifically, miRNAs are transcribed as part of pri-miRNAs (primary-miRNAs) which are cleaved to pre-miRNAs (precursor-miRNAs) in the nucleus by DROSHA (and its partner DGCR8 or Pasha) and then exported to the cytoplasm for further processing. Cleavage of pre-miRNAs by DICER1 generates mature miRNAs subsequently loaded to the RISC (RNA-induced silencing) complex which uses miRNA as template for recognition and cleavage of complementary mRNA with RNAse.

As the authors discuss, miRNA defects have a well-established role in development of model organisms e.g. (several Refs. provided):
- in C. elegans miRNA mutants causing lethality, developmental arrest and heterochronicity
- in Drosophila playing a role in the development of ovary, eye, nervous system etc.
- in mice mRNAs play a role in BMP and TGF-beta signaling while neuronal loss of miRNA processing leads to neurodegeneration/anatomical defects.

Feingold syndrome 2 is the single Mendelian disease associated to date with miRNAs, through deletion of a cluster containing 6 MIR genes.

miRNA dysregulation is also observed in Rett syndrome - and DROSHA implicated in the pathogenesis of the syndrome - as MECP2 and FOXG1 are cofactors of the microprocessor complex regulating processing of miRNA. One of the individuals here reported had a clinical diagnosis of Rett spectrum while both had overlapping features with Rett s.

Studies of DROSHA-dependent miRNAs in fibroblasts from one individual revealed significantly altered expression of mature miRNA (e.g. increased miR98, a miRNA with reduced expression in studies of somatic DROSHA variants) although this was not likely due to processing errors (given only a modest decrease of precursor miRNAs).

Previous studies have demonstrated that drosha (the Drosophila ortholog) null mutants die during post-embryonic development with 100% lethality before adulthood (3rd instar larval stage/beginning of pupariation). Mosaic flies with mutant eyes are small-eyed, while viable hypomorphic alleles display synaptic transmission defects (several Refs provided).

Here, homozygous flies for null alleles died at the end of 3rd instar larval stage/beginning of pupariation, while loss of drosha resulted in lack of imaginal disc tissue (which surrounds the larval brain) and severely reduced brain size, the latter similar to the microcephaly phenotype. [To the best of my understanding] introduction of a mutated genomic rescue construct (carrying similar substitutions as those observed in human subjects) in eye-specific drosha null (W1123X) flies was partially able to rescue eye/head size for wt or Asp1219Gly (human:Asp1084Gly) suggesting that the latter is a partial LoF allele. Arg1210Trp (corresponding to human Arg1342Trp) was able to rescue the eye phenotype and was not damaging to the function in the specific assay. Drosha expression levels were similar for genomic rescue flies either for wt or for the Asp-Gly variant suggesting that the effect was not due to expression levels (but rather function). Expression of mature miRNAs known to be regulated by Drosha were not affected when comparing wildtype larvae with genomic construct for wt or Asp1084Gly.

Upon expression of human cDNA using GAL4/UAS system in drosha mutant (null) eye clones, the reference partially rescued the eye size defect, Asp-Gly behaved as partial loss-of-function allele (~50% function compared to ref), while the Arg-Trp variant was shown to behave as a weaker loss-of-function allele.

The authors generated eye-specific drosha mutant clones to study the aging adult eye using ERG recordings. While null mutants display almost no response to light (7- and 20-day old flies), wt genomic rescue was shown to rescue ERG responses, Asp-Gly variant had significant defects (at both 7 and 20 days) and the Arg-Trp had defects approaching statistical significance only at the age of 20 days. Overall these data suggested that Arg-Trp had less severe effect compared to Asp-Gly (as above) while both variants led to progressive neuronal dysfunction.

Using CRISPR/Cas9 the authors generated C.elegans knock-ins for a variant analogous to the Asp1219Gly human one. Homozygous animals were inviable at larval stages, displayed a heterochronic phenotype (heterochronicity : development of cells or tissues at an abnormal time relative to other unaffected events in an organism / miRNAs are known to be involved in the heterochronic gene pathway) while this variant was deleterious to the Drosha's ability to process miRNAs.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1576 PRPF8 Konstantinos Varvagiannis gene: PRPF8 was added
gene: PRPF8 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PRPF8 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRPF8 were set to 35543142
Phenotypes for gene: PRPF8 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Retinitis pigmentosa 13, MIM # 600059
Penetrance for gene: PRPF8 were set to unknown
Review for gene: PRPF8 was set to AMBER
Added comment: A recent study suggests that heterozygous PRPF8 variants are associated with a syndromic form of DD/ID, in some cases epilepsy with heterogeneous other clinical findings. However the authors acknowledge that not all variants within their cohort may be pathogenic (5 VUSs using ACMG criteria) and that conclusive evidence may necessitate functional studies.

Heterozygous variants (typically clustering in exon 42) have been reported to cause a non-syndromic form of RP with variable expressivity and incomplete penetrance (Retinitis pigmentosa 13, MIM # 600059) .

Overall consider inclusion with amber rating.

------

O'Grady et al. (2022 - PMID: 35543142) describe the phenotype of 14 unrelated individuals with heterozygous, mostly de novo, missense and pLoF variants in PRPF8.

Nearly all had some degree of global developmental delay or ID (13/14). 6/14 had a diagnosis of ASD. Seizures were reported in 4 or 5 subjects. Other features included short stature (6/14), abnormal gait, cardiac anomalies and somewhat overlapping facial features (11/14). Ages ranged from 4 - 19 years (median : 9y).

PRPF8 encodes a component of the spliceosomes which in turn are involved in removal of introns from mRNA precursors. The gene is ubiquitously expressed with expression within brain being highest in cerebral cortex, basal ganglia and cerebellum (Refs. provided).

Individuals were investigated with exome sequencing (12/14) or an autism/ID panel of >2500 genes (likely application of virtual panel on exome data).

13 individuals harbored a missense SNV and 1 further had a frameshift variant. In 12 individuals the variant had occurred de novo. 1 individual had inherited the variant from a possibly mosaic parent, while for 1 further a single parental sample was available.

PRPF8 is intolerant to both missense (Z = 8.28) and pLoF variants (pLI : 1). Variants in 5 individuals were formally classified as VUS while 2 variants were present in gnomAD.

Additional findings (CNVs/SNVs) were reported, in some cases possibly of relevance.

As the authors discuss, heterozygous pathogenic missense SNVs cause (and account for ~2-3% of) non-syndromic AD retinitis pigmentosa with variable expressivity and incomplete penetrance. Variants for this phenotype are typically missense - although nonsense ones have also been reported - clustering within ex42 (of 43) encoding the MPN domain (aa 2103-2335 / NP_006436) and weakening interaction with 2 other spliceosomal proteins.

Variants in the present study occurred throughout the gene. Although not universally assessed within the cohort, only one participant had RP (in this case variant within the MPN domain).

There were no variant studies performed.

Animal models: the authors cite a study by Graziotto et al (2011 - PMID: 20811066) where knock-in mice for a missense variant in ex42 displayed defects of the retinal pigment epithelium. A zebrafish ko model also cited (Keightley et al, 2013 - PMID: 23714367) displayed widespread apoptosis in brain and spinal cord.

The authors cite a previous bioinformatic study identifying PRPF8 as a major hub connecting gene-interaction networks for NDDs (Casanova et al, 2018 - PMID: 30420816) as well as 2 studies demonstrating enrichment of variants in individuals with NDDs compared to controls (da Silva Montenegro et al, 2020 - PMID: 31696658, Karczewski et al, 2020 - PMID: 32461654).
Sources: Literature
Intellectual disability - microarray and sequencing v3.1564 BUB1 Konstantinos Varvagiannis gene: BUB1 was added
gene: BUB1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: BUB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BUB1 were set to 35044816
Phenotypes for gene: BUB1 were set to Congenital microcephaly; Global developmental delay; Intellectual disability; Abnormal heart morphology; Growth delay
Penetrance for gene: BUB1 were set to Complete
Review for gene: BUB1 was set to AMBER
Added comment: A recent study provides evidence that this gene (biallelic variants) is relevant for inclusion in the DD/ID panel likely with amber / green rating (2 unrelated individuals with similar phenotype, 3 variants, role of this gene, extensive variant studies and demonstrated effects on cohesion and chromosome segregation, similarities with other disorders caused by mutations in mitosis-associated genes at the clinical and cellular level || number of affected subjects/families, different protein levels/kinase activity likely underlying few differences observed, role of monoallelic variants unclear).

This gene could probably be included in other panels e.g. for microcephaly (not added).

There is no BUB1-related phenotype in OMIM, G2P, SysID, PanelApp Australia.

------

Carvalhal, Bader et al (2022 - PMID: 35044816) describe the phenotype of 2 unrelated individuals with biallelic BUB1 pathogenic variants and provide evidence for the underlying mechanism for this condition.

Common features comprised congenital microcephaly (2/2 | -2,8 and -2.9 SDs respectively / -7 and -4,9 SDs on last evaluation), DD/ID (2/2 - in one case with formal evaluation mild), some degree of growth retardation (2/2) and cardiovascular findings (2/2 - small ASD type II). Other findings limited to one subject included Pierre-Robin sequence, Axenfeld-Rieger anomaly, choanal stenosis, hypospadias, tracheal stenosis, etc.

Initial genetic testing was normal (incl. CMA in both, metabolic testing and individual genes incl. PITX2, GREM1, FOXD3, FOXC1 for one proband).

Exome sequencing revealed homozygosity for a start-lost variant (NM_004336.4:c.2T>G / p.?) in the first subject (P1). The variant lied within a 14-Mb region of homozygosity (no reported consanguinity). The second individual (P2) was compound htz for a splice-site and a frameshift variant (c.2625+1G>A and c.2197dupG) with Sanger sequencing used for confirmation and segregation studies.

BUB1 encodes BUB1 Mitotic checkpoint serine/threonine kinase (/Budding uninhibited by benzimidazoles 1, s. cerevisiae, homolog of) a multifunctional component of the segregation machinery contributing to multiple mitotic processes. The protein has a kinetochore localization domain, multiple binding motifs and a C-terminal kinase domain (aa 784-1085) this structure allowing both kinase dependent/independent activities.

cDNA sequencing revealed that the splice variant leads to skipping of ex21 and in-frame deletion of 54 residues in the kinase domain (c.2625+1G>A / p.Val822_Leu875del).

Both individuals exhibited normal BUB1 mRNA levels (fibroblasts in both, tracheal tissue in one) but severely reduced protein levels (fibroblasts). A shorter protein product corresponding to the in-frame deletion variant was also detected.

The authors performed additional experiments to confirm small amounts of full-length protein produced by the start-lost variant. This was shown in SV40-transformed fibroblasts from the corresponding individual (treatment with a proteasome inhibitor resulted also in higher levels). Upon generation RPE1 cells using CRISPR for the start-lost variant, again, small amounts of full length protein were detected, which was not the case for complete knockout HAP1 cells. No shorter versions could be detected in the patient cells or RPE1 cells, arguing against utilization of an alternative start codon. (Use of non-AUG start codons discussed based on literature).

In line with small amounts of full-length protein the authors provided evidence for residual kinase activity for the start-loss variant (through proxy of phosphorylation of its substrate and use of a BUB1 kinase inhibitor). Cells from the individual with the frameshift variant and the splice variant had no residual kinase activity.

The authors provide evidence for mitotic defects in cells from both individuals with prolonged mitosis duration and chromosome segregation defects. Some patient-specific findings were thought to be related with BUB1 protein levels (affecting BUB1-mediated kinetochore recruitment of BUBR1, important for chromosome alignment) and others due to residual kinase activity [->phosphorylation of H2A at Threonine 120-> affecting centromeric recruitment of Aurora B, SGO1 (role in protection of centromeric cohesion), TOP2A (a protein preventing DNA breakage during sister chromatid separation), these correlated with high anaphase bridges (in P2), aneuploidy observed in lymphoblasts and primary fibroblasts from P2 but not P2's lymphocytes or lymphocytes from P1) and defective sister chromatid cohesion defects (in primary fibroblasts from P2, milder effect for P1).

Overall the authors provide evidence for overlapping clinical and cellular phenotype for this condition with primary microcephalies (MCPH - mutations in genes for mitotic regulators incl. kinetochore proteins or regulators of chromosome organization), mosaic variegated aneuploidy (biallelic variants in genes for kinetochore proteins, with random aneuploidies occurring in >5% cells of different tissues) and cohesinopathies (mostly Roberts or Warsaw breakage syndromes - characterized by cohesion loss and/or spontaneous railroad chromosomes).

Mouse model: Hmz disruption in mice is lethal shortly after E3.5 (cited PMID: 19772675), while a hypomorphic mutant mouse (lacking exons 2-3, expressing <5% of wt protein levels) is viable but exhibits increased tumorigenesis with aging and aneuploidy (cited PMID: 19117986). Mutant mice that lack kinase activity though with preserved Bub1 protein abundance, did not display increased susceptibility, despite substantial segregation errors and aneuploidies (cited PMID: 23209306).

The authors note that monoallelic germline BUB1 variants have been described in small number of individuals with CRC, exhibiting reduced expression levels and variegated aneuploidy in multiple tissues (cited PMID: 23747338) although the role of BUB1 is debated (cited PMIDs: 27713038, 29448935).

Based on the discussion, complete loss of BUB1 activity is presumed to be embryonically lethal based on the mouse study (PMID: 19772675) and reduced BUB1 expression associated with spontaneous miscarriages (cited PMID: 20643875, to my understanding in this study mRNA levels remained relatively constant despite reduced Bub1 protein levels, mRNA RT-PCR followed by sequencing revealed only 2 synonymous BUB1 variants).
Sources: Literature
Intellectual disability - microarray and sequencing v3.1558 SLC35B2 Konstantinos Varvagiannis gene: SLC35B2 was added
gene: SLC35B2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: SLC35B2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC35B2 were set to 35325049
Phenotypes for gene: SLC35B2 were set to Abnormality of the skeletal system; Short long bone; Short stature; Abnormality of epiphysis morphology; Scoliosis; Multiple joint dislocation; Global develpmental delay; Intellectual disability; CNS hypomyelination; Abnormality of the corpus callosum; Cerebral atrophy; Abnormality of the amniotic fluid
Penetrance for gene: SLC35B2 were set to Complete
Review for gene: SLC35B2 was set to AMBER
Added comment: 2 unrelated individuals with biallelic SLC35B2 variants have been reported. DD and ID were part of the phenotype.

There is currently no associated phenotype in OMIM/G2P/SysID. The gene has amber rating in the leukodystrophies panel of PanelApp Australia.

Consider inclusion in the current panel (or other possibly relevant ones eg. for skeletal disorders, short stature, white matter disorders, corpus callosum, etc) with amber rating.

---

Guasto et al (2022 - PMID:35325049) report 2 unrelated individuals with biallelic SLC35B2 variants.

SLC35B2 encodes solute carrier family 35 (3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter), member B2.

The protein is located in the Golgi membrane and serves as transporter of the activated nucleotide sulfate PAPS from the cytosol, where it is synthesized to the Golgi lumen. Another PAPS transporter is encoded by SLC35B3. In the Golgi apparatus PAPS serves as substrate of sulfotransferases for the addition sulfate to the covalently attached GAG chains of proteoglycans (PGs).

The phenotype corresponded to a chondrodysplasia manifesting as severe pre- and postnatal growth retardation (height <-4 SD and -8 SD), early scoliosis, multiple joint dislocations (in one). There was severe DD affecting motor and expressive language development with associated ID. Brain imaging was suggestive of hypomyelinating leukodystrophy with thin corpus callosum and cerebral atrophy. One individual had a cleft palate in the context of Pierre Robin sequence.

Both individuals were investigated with exome sequencing.

The first individual - born to consanguineous parents - was homozygous for an in-frame del (NM_178148.3:c.1218_1220del, p.Leu407del) with Sanger sequencing confirming the variants, and heterozygosity in parents and 2 unaffected sibs. There was an initially identified hmz CUL7 variant (for 3M syndrome), which was not felt sufficient to explain the severity of the phenotype and notably ID.

The 2nd proband was homozygous for a fs variant (c.1224_1225delAG / p.Arg408SerfsTer18 - leading to loss of the last 8 amino acids) occurring in the context of uniparental isodisomy [iUPD(6)] spanning the complete chr6 based on the exome data.

Among the evidence presented for SLC35B2 and the variants :
- SLC35B2 has high mRNA expression in fetal and adult mouse brain and other tissues.
- Upon qPCR analysis of mRNA expression in human brain samples, the gene had expression across the brain (frontal lobe grey matter, subcortical frontal white matter/cerebellum).
- High expression was shown upon analysis of mouse brain single cell RNA data (EMBL) in oligodendrocytes and microglial cells.
- RT-PCR on mRNA from skin fibroblasts (both individuals) revealed significant decrease of SCL35B2 mRNA levels compared to controls.
- Transfection of C-terminal c-myc tagged wt or mutant proteins in HEK293F cells, followed by western blotting did not reveal significant difference at the protein level. Wt SLC35B2 localized at the Golgi apparatus as suggested by colocalization with GM130 marker. The 2 variants however displayed only partial colocalization (/loss of localization specificity) with diffuse signal in the cell.
- Chondroitin sulfate disaccharide sulfation was decreased upon HPLC disaccharide analysis in patient fibroblasts and bikunin (a circulating proteoglycan in blood) electrophoretic pattern in patient sera.
- Disorders due to variants in genes implicated in proteoglycan biogenesis (e.g. XYLT1, B3GALT6, CHSY1) are associated with skeletal/connective tissue manifestations with DD/ID.
- C-elegans model lacking pst-1 (SLC35B2 ortholog) provides support that the protein is required for migration, axonal guidance, and presynaptic development in a subset of neurons.
- dsm-1 - the rat ortholog - is expressed in rat brain in D-serine and NMDA receptor rich regions. When expressed in Xenopus oocytes it accelerated the efflux of D-serine (a co-agonist for NMDA receptor).
- Variants in other members of SLC superfamily (e.g. SLC17A5, SLC35A3, SLC29A3, SLC35A2) have been associated with brain-bone phenotypes.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1520 HIST1H4D Konstantinos Varvagiannis gene: HIST1H4D was added
gene: HIST1H4D was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: HIST1H4D was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4D were set to 35202563
Phenotypes for gene: HIST1H4D were set to Global developmental delay; Intellectual disability; Microcephaly; Growth abnormality; Abnormality of the face
Penetrance for gene: HIST1H4D were set to Complete
Mode of pathogenicity for gene: HIST1H4D was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: HIST1H4D was set to AMBER
Added comment: Histone H4 is a core component of the nucleosome, the basic repeating unit of eukaryotic chromatin. Each nucleosome consists of ~150 bp of DNA wrapped around a histone octamer. Each histone octamer is composed of 2 copies of each of the histones H2A, H2B, H3, H4. This organization is important for DNA replication, transcription and repair.

There are 14 canonical histone H4 genes in the human genome, which despite being different at the nucleotide level encode an identical protein. These cluster in 3 genomic loci. Their transcription is independently regulated with differing expression during brain development and in human tissues.

Histone H4 forms a dimer with H3 (which however has variant isoforms linked to specific cellular processes).

Pathogenic variants in genes encoding H4 have been reported in several individuals. Irrrespective of the gene for H4 involved, all patients presented with highly overlapping features, DD and ID being universal. Available reports to date concern :
- H4C3/HIST1H4C (9 subjects - PMID: 28920961, 35202563),
- H4C11/HIST1H4J (1 subject - PMID: 31804630, 35202563),
- H4C4/HIST1H4D (1 subject - PMID:35202563),
- H4C5/HIST1H4E (17 subjects - PMID: 35202563),
- H4C6/HIST1H4F (1 subject - PMID: 35202563),
- H4C9/HIST1H4I (3 subjects - PMID: 35202563).

Variants in all cases were missense SNVs, occurring (in almost all cases) as dn variants and affecting the same residue in the same and/or different H4 genes (details for clusters below). Eg. Arg45Cys was a recurrent variant for H4C5 (>=7 subjects), while variants affecting Arg40 have been reported in H4C4, H4C5, H4C9, H4C11 (7 subjects overall).

Zebrafish studies for all genes reported have included most - if not all - patient variants and recapitulate features observed in affected individuals (head size/structure and growth).

Additional studies specificaly for H4C3/HIST1H4C have been performed in patient fibroblasts (demonstrating among others transcriptional dysregulation) and zebrafish (accumulation of DSBs, increased apoptosis in head/tail, abn. cell cycle progression).

Note that the nomenclature for variants - at the protein level - used in literature commonly takes into consideration cleavage of Met1, thus the numbering may not correspond to the HGVS one.

Relevant entries exist in OMIM, G2P and SysID only for H4C3/HIST1H4C (Tessadori-van Haaften neurodevelopmental syndrome 1, #619758) and H4C11/HIST1H4J (?Tessadori-van Haaften neurodevelopmental syndrome 2, #619759) but not for other genes.

Rating in PanelApp Australia - ID Panel : HIST1H4C Green, H4J Amber, H4D Amber, H4E Green, H4F Amber, H4I Green.

Please consider inclusion in other possibly relevant panels (microcephaly, short stature/FTT, etc).

------
Initial work from Tessadori et al (incl. DDD study, 2017 - PMID:28920961) identified monoallelic missense SNVs affecting the same residue of H4C3 (HIST1H4C), in 3 individuals from 2 families. [c.274A>C/ HGVS p.(Lys92Gln) dn in 1 subject and c.275A>C/ HGVS p.(Lys92Arg) inherited from unaffected mosaic parent].

Individuals from both families having relevant age had intellectual disability (2/2 - 2 families). Other features incl. growth delay (3/3) and microcephaly (3/3).

Expression of the variants in zebrafish severely affected structural development recapitulating the patient phenotypes (microcephaly and short stature).

RNA sequencing in fibroblasts from 2 unrelated patients and a control, revealed that expression of H4C3 variants was similar to wt. The authors estimated that ~8% of H4 cDNA molecules contained the variant. LC-MS/MS analysis suggested that the mutant protein was present in nucleosomes at a level of 1-2% while RNA-seq identified 115 differential expressed genes, with enrichment for relevant procedures (chr. organization, histone binding, DNA packaging, nucleosomal organization, cell cycle).

Post-translational modifications of Lys92 (H4K91) are highly conserved and have been previously associated with processes from chromatin assembly , DNA damage sensitivity, etc. Post-translational marks on Lys92 (K91) were absent in patient derived cells as a result of each variant.

Zebrafish models for both variants were suggestive for accumulation of double strand breaks (DSBs) more visible in heads and tails of larvae. Embryos expressing mutants displayed increased apoptosis in head and tail. Additional studies in larvae were suggestive of abnormal cell cycle progression (rel. increase in cellls in S/G2/M phase, increased occurrence of activated CHK2 with p53 stabilization) applying to both variants studied.

------
In a subsequent publication, Tessadori et al. (2020 - PMID: 31804630) described the phenotype of a 14 y.o. boy harboring a dn heterozygous missense H4C11 (HIST1H4J) variant following trio-ES [c.274A>G / HGVS p.(Lys92Glu)]. Features incl. profound ID, microcephaly, short stature with some dysmorphic features (uplsanting p-f, hypertelorism, etc). Previous work-up was normal/non-diagnostic and incl. FMR1, MECP2 and a CMA showing an inherited 207 kb CNV involving KCNV1. Upon mRNA microinjection in zebrafish embryos - either for wt or for Lys92Glu HIST1H4J - effect for wt was very mild. Lys92Glu expression led to defective development of head structures (brain, eyes), faulty body axis growth and dysmorphic tail reproducing the microcephaly and short stature phenotype. This was similar to previous zebrafish studies for HIS1H4C variants (above).

------
Tessadori et al. (2022 - PMID: 35202563) describe 29 *additional individuals with de novo missense variants in genes encoding H4, namely:
- H4C3 (HIST1H4C/N=6 subjects),
- H4C11 (HIST1H4J/N=1),
- H4C4 (HIST1H4D/N=1),
- H4C5 (HIST1H4E/N=17),
- H4C6 (HIST1H4F/N=1),
- H4C9 (HIST1H4I/N=3).

All individuals, exhibited DD and ID (29/29). Other features incl. hypotonia (10/29), seizures (5/29), autism (5/29), ataxia (4/29). Abnormal growth incl. progressive microcephaly (2/19 prenatal, 20/29 postnatal onset), short stature/FTT (each 11/29). Few had skeletal features (craniosynostosis 2/29, abn. digits 4/29, vertebral 4/29). Some had visual (17/28) or hearing impairment (7/29). Facial features incl. hypertelorism (5/29), upslanting p-f (3/29), broad nasal tip (11/29), thin upper lip (4/29) and teeth anomalies (6/29 - notably gap between central incisors).

The authors state that the cohort was collected with trio WES but also after data sharing via Genematcher / DECIPHER.

Identified variants were in all cases missense and de novo, the latter either by trio WES or Sanger sequencing of parents.

Previous work-up or presence of additional variants are not discussed.

At the protein level 10 aa were affected, 6 of which recurrently within the same gene (Arg45, His75, Lys91, Tyr98) as well among several genes for H4 (Pro32, Arg40). Variants lied within two clusters, one corresponding to the α-helix of H4 (reported variants affected Lys31 - Arg45) important for DNA contacts, interactions with H3 and histone chaperones. The other within the core of nucleosome (reported patient variants : His75-Tyr98) with important strucural contact between H3-H4 dimer and histone chaperones.

There were no detectable genotype-phenotype patterns separating individual H4 genes or protein regions. Of note, variability was observed even among 7 individuals with the same dn H4C5 variant (Arg45Cys).

All variants were absent from control databases incl. gnomAD and affected residues conserved through to S. cerevisiae. Substitutions affecting Arg45 and Gly94 and His75 have been studied previously with effect in growth/fitness/chromatin remodeling/DNA damage repair depending on variant (5 studies cited).

Zebrafish embryos at the 1 cell stage were injected with mRNA encoding either wt or identified variants, the latter inducing significant developmental defects with the exception of Pro32Ala (H4C3) and Arg40Cys (H4C5, H4C11).

For Pro32Ala and Arg40Cys however, the strong recurrence in this cohort supports pathogenicity. A dosage dependent effect was observed for 2 variants.

H4 genes appear to be tolerant to both missense and loss-of-function variation (the latter even in homozygous form) suggesting a dominant effect of the variants.

------
[RefSeqs : H4C3/HIST1H4C - NM_0035242.4 | H4C4/HIST1H4D - NM_003539.4 | H4C5/HIST1H4E - NM_003545.3 | H4C6/HIST1H4F - NM_003540.4 | H4C9/HIST1H4I - NM_003495.2 | H4C11/HIST1H4J - NM_021968.4 // Variants at the protein level above are according to the HGVS nomenclature. However as the N-terminal methionine is cleaved, numbering relative to the mature peptide has also been used in publications eg. p.Pro33Ala HGVS corresponding to Pro32Ala]
Sources: Literature
Intellectual disability - microarray and sequencing v3.1520 HIST1H4E Konstantinos Varvagiannis gene: HIST1H4E was added
gene: HIST1H4E was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: HIST1H4E was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4E were set to 35202563
Phenotypes for gene: HIST1H4E were set to Global developmental delay; Intellectual disability; Microcephaly; Growth abnormality; Abnormality of the face
Penetrance for gene: HIST1H4E were set to unknown
Mode of pathogenicity for gene: HIST1H4E was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: HIST1H4E was set to GREEN
Added comment: Histone H4 is a core component of the nucleosome, the basic repeating unit of eukaryotic chromatin. Each nucleosome consists of ~150 bp of DNA wrapped around a histone octamer. Each histone octamer is composed of 2 copies of each of the histones H2A, H2B, H3, H4. This organization is important for DNA replication, transcription and repair.

There are 14 canonical histone H4 genes in the human genome, which despite being different at the nucleotide level encode an identical protein. These cluster in 3 genomic loci. Their transcription is independently regulated with differing expression during brain development and in human tissues.

Histone H4 forms a dimer with H3 (which however has variant isoforms linked to specific cellular processes).

Pathogenic variants in genes encoding H4 have been reported in several individuals. Irrrespective of the gene for H4 involved, all patients presented with highly overlapping features, DD and ID being universal. Available reports to date concern :
- H4C3/HIST1H4C (9 subjects - PMID: 28920961, 35202563),
- H4C11/HIST1H4J (1 subject - PMID: 31804630, 35202563),
- H4C4/HIST1H4D (1 subject - PMID:35202563),
- H4C5/HIST1H4E (17 subjects - PMID: 35202563),
- H4C6/HIST1H4F (1 subject - PMID: 35202563),
- H4C9/HIST1H4I (3 subjects - PMID: 35202563).

Variants in all cases were missense SNVs, occurring (in almost all cases) as dn variants and affecting the same residue in the same and/or different H4 genes (details for clusters below). Eg. Arg45Cys was a recurrent variant for H4C5 (>=7 subjects), while variants affecting Arg40 have been reported in H4C4, H4C5, H4C9, H4C11 (7 subjects overall).

Zebrafish studies for all genes reported have included most - if not all - patient variants and recapitulate features observed in affected individuals (head size/structure and growth).

Additional studies specificaly for H4C3/HIST1H4C have been performed in patient fibroblasts (demonstrating among others transcriptional dysregulation) and zebrafish (accumulation of DSBs, increased apoptosis in head/tail, abn. cell cycle progression).

Note that the nomenclature for variants - at the protein level - used in literature commonly takes into consideration cleavage of Met1, thus the numbering may not correspond to the HGVS one.

Relevant entries exist in OMIM, G2P and SysID only for H4C3/HIST1H4C (Tessadori-van Haaften neurodevelopmental syndrome 1, #619758) and H4C11/HIST1H4J (?Tessadori-van Haaften neurodevelopmental syndrome 2, #619759) but not for other genes.

Rating in PanelApp Australia - ID Panel : HIST1H4C Green, H4J Amber, H4D Amber, H4E Green, H4F Amber, H4I Green.

Please consider inclusion in other possibly relevant panels (microcephaly, short stature/FTT, etc).

------
Initial work from Tessadori et al (incl. DDD study, 2017 - PMID:28920961) identified monoallelic missense SNVs affecting the same residue of H4C3 (HIST1H4C), in 3 individuals from 2 families. [c.274A>C/ HGVS p.(Lys92Gln) dn in 1 subject and c.275A>C/ HGVS p.(Lys92Arg) inherited from unaffected mosaic parent].

Individuals from both families having relevant age had intellectual disability (2/2 - 2 families). Other features incl. growth delay (3/3) and microcephaly (3/3).

Expression of the variants in zebrafish severely affected structural development recapitulating the patient phenotypes (microcephaly and short stature).

RNA sequencing in fibroblasts from 2 unrelated patients and a control, revealed that expression of H4C3 variants was similar to wt. The authors estimated that ~8% of H4 cDNA molecules contained the variant. LC-MS/MS analysis suggested that the mutant protein was present in nucleosomes at a level of 1-2% while RNA-seq identified 115 differential expressed genes, with enrichment for relevant procedures (chr. organization, histone binding, DNA packaging, nucleosomal organization, cell cycle).

Post-translational modifications of Lys92 (H4K91) are highly conserved and have been previously associated with processes from chromatin assembly , DNA damage sensitivity, etc. Post-translational marks on Lys92 (K91) were absent in patient derived cells as a result of each variant.

Zebrafish models for both variants were suggestive for accumulation of double strand breaks (DSBs) more visible in heads and tails of larvae. Embryos expressing mutants displayed increased apoptosis in head and tail. Additional studies in larvae were suggestive of abnormal cell cycle progression (rel. increase in cellls in S/G2/M phase, increased occurrence of activated CHK2 with p53 stabilization) applying to both variants studied.

------
In a subsequent publication, Tessadori et al. (2020 - PMID: 31804630) described the phenotype of a 14 y.o. boy harboring a dn heterozygous missense H4C11 (HIST1H4J) variant following trio-ES [c.274A>G / HGVS p.(Lys92Glu)]. Features incl. profound ID, microcephaly, short stature with some dysmorphic features (uplsanting p-f, hypertelorism, etc). Previous work-up was normal/non-diagnostic and incl. FMR1, MECP2 and a CMA showing an inherited 207 kb CNV involving KCNV1. Upon mRNA microinjection in zebrafish embryos - either for wt or for Lys92Glu HIST1H4J - effect for wt was very mild. Lys92Glu expression led to defective development of head structures (brain, eyes), faulty body axis growth and dysmorphic tail reproducing the microcephaly and short stature phenotype. This was similar to previous zebrafish studies for HIS1H4C variants (above).

------
Tessadori et al. (2022 - PMID: 35202563) describe 29 *additional individuals with de novo missense variants in genes encoding H4, namely:
- H4C3 (HIST1H4C/N=6 subjects),
- H4C11 (HIST1H4J/N=1),
- H4C4 (HIST1H4D/N=1),
- H4C5 (HIST1H4E/N=17),
- H4C6 (HIST1H4F/N=1),
- H4C9 (HIST1H4I/N=3).

All individuals, exhibited DD and ID (29/29). Other features incl. hypotonia (10/29), seizures (5/29), autism (5/29), ataxia (4/29). Abnormal growth incl. progressive microcephaly (2/19 prenatal, 20/29 postnatal onset), short stature/FTT (each 11/29). Few had skeletal features (craniosynostosis 2/29, abn. digits 4/29, vertebral 4/29). Some had visual (17/28) or hearing impairment (7/29). Facial features incl. hypertelorism (5/29), upslanting p-f (3/29), broad nasal tip (11/29), thin upper lip (4/29) and teeth anomalies (6/29 - notably gap between central incisors).

The authors state that the cohort was collected with trio WES but also after data sharing via Genematcher / DECIPHER.

Identified variants were in all cases missense and de novo, the latter either by trio WES or Sanger sequencing of parents.

Previous work-up or presence of additional variants are not discussed.

At the protein level 10 aa were affected, 6 of which recurrently within the same gene (Arg45, His75, Lys91, Tyr98) as well among several genes for H4 (Pro32, Arg40). Variants lied within two clusters, one corresponding to the α-helix of H4 (reported variants affected Lys31 - Arg45) important for DNA contacts, interactions with H3 and histone chaperones. The other within the core of nucleosome (reported patient variants : His75-Tyr98) with important strucural contact between H3-H4 dimer and histone chaperones.

There were no detectable genotype-phenotype patterns separating individual H4 genes or protein regions. Of note, variability was observed even among 7 individuals with the same dn H4C5 variant (Arg45Cys).

All variants were absent from control databases incl. gnomAD and affected residues conserved through to S. cerevisiae. Substitutions affecting Arg45 and Gly94 and His75 have been studied previously with effect in growth/fitness/chromatin remodeling/DNA damage repair depending on variant (5 studies cited).

Zebrafish embryos at the 1 cell stage were injected with mRNA encoding either wt or identified variants, the latter inducing significant developmental defects with the exception of Pro32Ala (H4C3) and Arg40Cys (H4C5, H4C11).

For Pro32Ala and Arg40Cys however, the strong recurrence in this cohort supports pathogenicity. A dosage dependent effect was observed for 2 variants.

H4 genes appear to be tolerant to both missense and loss-of-function variation (the latter even in homozygous form) suggesting a dominant effect of the variants.

------
[RefSeqs : H4C3/HIST1H4C - NM_0035242.4 | H4C4/HIST1H4D - NM_003539.4 | H4C5/HIST1H4E - NM_003545.3 | H4C6/HIST1H4F - NM_003540.4 | H4C9/HIST1H4I - NM_003495.2 | H4C11/HIST1H4J - NM_021968.4 // Variants at the protein level above are according to the HGVS nomenclature. However as the N-terminal methionine is cleaved, numbering relative to the mature peptide has also been used in publications eg. p.Pro33Ala HGVS corresponding to Pro32Ala]
Sources: Literature
Intellectual disability - microarray and sequencing v3.1520 HIST1H4F Konstantinos Varvagiannis gene: HIST1H4F was added
gene: HIST1H4F was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: HIST1H4F was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4F were set to 35202563
Phenotypes for gene: HIST1H4F were set to Global developmental delay; Intellectual disability; Microcephaly; Growth abnormality; Abnormality of the face
Penetrance for gene: HIST1H4F were set to unknown
Mode of pathogenicity for gene: HIST1H4F was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: HIST1H4F was set to AMBER
Added comment: Histone H4 is a core component of the nucleosome, the basic repeating unit of eukaryotic chromatin. Each nucleosome consists of ~150 bp of DNA wrapped around a histone octamer. Each histone octamer is composed of 2 copies of each of the histones H2A, H2B, H3, H4. This organization is important for DNA replication, transcription and repair.

There are 14 canonical histone H4 genes in the human genome, which despite being different at the nucleotide level encode an identical protein. These cluster in 3 genomic loci. Their transcription is independently regulated with differing expression during brain development and in human tissues.

Histone H4 forms a dimer with H3 (which however has variant isoforms linked to specific cellular processes).

Pathogenic variants in genes encoding H4 have been reported in several individuals. Irrrespective of the gene for H4 involved, all patients presented with highly overlapping features, DD and ID being universal. Available reports to date concern :
- H4C3/HIST1H4C (9 subjects - PMID: 28920961, 35202563),
- H4C11/HIST1H4J (1 subject - PMID: 31804630, 35202563),
- H4C4/HIST1H4D (1 subject - PMID:35202563),
- H4C5/HIST1H4E (17 subjects - PMID: 35202563),
- H4C6/HIST1H4F (1 subject - PMID: 35202563),
- H4C9/HIST1H4I (3 subjects - PMID: 35202563).

Variants in all cases were missense SNVs, occurring (in almost all cases) as dn variants and affecting the same residue in the same and/or different H4 genes (details for clusters below). Eg. Arg45Cys was a recurrent variant for H4C5 (>=7 subjects), while variants affecting Arg40 have been reported in H4C4, H4C5, H4C9, H4C11 (7 subjects overall).

Zebrafish studies for all genes reported have included most - if not all - patient variants and recapitulate features observed in affected individuals (head size/structure and growth).

Additional studies specificaly for H4C3/HIST1H4C have been performed in patient fibroblasts (demonstrating among others transcriptional dysregulation) and zebrafish (accumulation of DSBs, increased apoptosis in head/tail, abn. cell cycle progression).

Note that the nomenclature for variants - at the protein level - used in literature commonly takes into consideration cleavage of Met1, thus the numbering may not correspond to the HGVS one.

Relevant entries exist in OMIM, G2P and SysID only for H4C3/HIST1H4C (Tessadori-van Haaften neurodevelopmental syndrome 1, #619758) and H4C11/HIST1H4J (?Tessadori-van Haaften neurodevelopmental syndrome 2, #619759) but not for other genes.

Rating in PanelApp Australia - ID Panel : HIST1H4C Green, H4J Amber, H4D Amber, H4E Green, H4F Amber, H4I Green.

Please consider inclusion in other possibly relevant panels (microcephaly, short stature/FTT, etc).

------
Initial work from Tessadori et al (incl. DDD study, 2017 - PMID:28920961) identified monoallelic missense SNVs affecting the same residue of H4C3 (HIST1H4C), in 3 individuals from 2 families. [c.274A>C/ HGVS p.(Lys92Gln) dn in 1 subject and c.275A>C/ HGVS p.(Lys92Arg) inherited from unaffected mosaic parent].

Individuals from both families having relevant age had intellectual disability (2/2 - 2 families). Other features incl. growth delay (3/3) and microcephaly (3/3).

Expression of the variants in zebrafish severely affected structural development recapitulating the patient phenotypes (microcephaly and short stature).

RNA sequencing in fibroblasts from 2 unrelated patients and a control, revealed that expression of H4C3 variants was similar to wt. The authors estimated that ~8% of H4 cDNA molecules contained the variant. LC-MS/MS analysis suggested that the mutant protein was present in nucleosomes at a level of 1-2% while RNA-seq identified 115 differential expressed genes, with enrichment for relevant procedures (chr. organization, histone binding, DNA packaging, nucleosomal organization, cell cycle).

Post-translational modifications of Lys92 (H4K91) are highly conserved and have been previously associated with processes from chromatin assembly , DNA damage sensitivity, etc. Post-translational marks on Lys92 (K91) were absent in patient derived cells as a result of each variant.

Zebrafish models for both variants were suggestive for accumulation of double strand breaks (DSBs) more visible in heads and tails of larvae. Embryos expressing mutants displayed increased apoptosis in head and tail. Additional studies in larvae were suggestive of abnormal cell cycle progression (rel. increase in cellls in S/G2/M phase, increased occurrence of activated CHK2 with p53 stabilization) applying to both variants studied.

------
In a subsequent publication, Tessadori et al. (2020 - PMID: 31804630) described the phenotype of a 14 y.o. boy harboring a dn heterozygous missense H4C11 (HIST1H4J) variant following trio-ES [c.274A>G / HGVS p.(Lys92Glu)]. Features incl. profound ID, microcephaly, short stature with some dysmorphic features (uplsanting p-f, hypertelorism, etc). Previous work-up was normal/non-diagnostic and incl. FMR1, MECP2 and a CMA showing an inherited 207 kb CNV involving KCNV1. Upon mRNA microinjection in zebrafish embryos - either for wt or for Lys92Glu HIST1H4J - effect for wt was very mild. Lys92Glu expression led to defective development of head structures (brain, eyes), faulty body axis growth and dysmorphic tail reproducing the microcephaly and short stature phenotype. This was similar to previous zebrafish studies for HIS1H4C variants (above).

------
Tessadori et al. (2022 - PMID: 35202563) describe 29 *additional individuals with de novo missense variants in genes encoding H4, namely:
- H4C3 (HIST1H4C/N=6 subjects),
- H4C11 (HIST1H4J/N=1),
- H4C4 (HIST1H4D/N=1),
- H4C5 (HIST1H4E/N=17),
- H4C6 (HIST1H4F/N=1),
- H4C9 (HIST1H4I/N=3).

All individuals, exhibited DD and ID (29/29). Other features incl. hypotonia (10/29), seizures (5/29), autism (5/29), ataxia (4/29). Abnormal growth incl. progressive microcephaly (2/19 prenatal, 20/29 postnatal onset), short stature/FTT (each 11/29). Few had skeletal features (craniosynostosis 2/29, abn. digits 4/29, vertebral 4/29). Some had visual (17/28) or hearing impairment (7/29). Facial features incl. hypertelorism (5/29), upslanting p-f (3/29), broad nasal tip (11/29), thin upper lip (4/29) and teeth anomalies (6/29 - notably gap between central incisors).

The authors state that the cohort was collected with trio WES but also after data sharing via Genematcher / DECIPHER.

Identified variants were in all cases missense and de novo, the latter either by trio WES or Sanger sequencing of parents.

Previous work-up or presence of additional variants are not discussed.

At the protein level 10 aa were affected, 6 of which recurrently within the same gene (Arg45, His75, Lys91, Tyr98) as well among several genes for H4 (Pro32, Arg40). Variants lied within two clusters, one corresponding to the α-helix of H4 (reported variants affected Lys31 - Arg45) important for DNA contacts, interactions with H3 and histone chaperones. The other within the core of nucleosome (reported patient variants : His75-Tyr98) with important strucural contact between H3-H4 dimer and histone chaperones.

There were no detectable genotype-phenotype patterns separating individual H4 genes or protein regions. Of note, variability was observed even among 7 individuals with the same dn H4C5 variant (Arg45Cys).

All variants were absent from control databases incl. gnomAD and affected residues conserved through to S. cerevisiae. Substitutions affecting Arg45 and Gly94 and His75 have been studied previously with effect in growth/fitness/chromatin remodeling/DNA damage repair depending on variant (5 studies cited).

Zebrafish embryos at the 1 cell stage were injected with mRNA encoding either wt or identified variants, the latter inducing significant developmental defects with the exception of Pro32Ala (H4C3) and Arg40Cys (H4C5, H4C11).

For Pro32Ala and Arg40Cys however, the strong recurrence in this cohort supports pathogenicity. A dosage dependent effect was observed for 2 variants.

H4 genes appear to be tolerant to both missense and loss-of-function variation (the latter even in homozygous form) suggesting a dominant effect of the variants.

------
[RefSeqs : H4C3/HIST1H4C - NM_0035242.4 | H4C4/HIST1H4D - NM_003539.4 | H4C5/HIST1H4E - NM_003545.3 | H4C6/HIST1H4F - NM_003540.4 | H4C9/HIST1H4I - NM_003495.2 | H4C11/HIST1H4J - NM_021968.4 // Variants at the protein level above are according to the HGVS nomenclature. However as the N-terminal methionine is cleaved, numbering relative to the mature peptide has also been used in publications eg. p.Pro33Ala HGVS corresponding to Pro32Ala]
Sources: Literature
Intellectual disability - microarray and sequencing v3.1520 HIST1H4I Konstantinos Varvagiannis gene: HIST1H4I was added
gene: HIST1H4I was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: HIST1H4I was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4I were set to 35202563
Phenotypes for gene: HIST1H4I were set to Global developmental delay; Intellectual disability; Microcephaly; Growth abnormality; Abnormality of the face
Penetrance for gene: HIST1H4I were set to unknown
Mode of pathogenicity for gene: HIST1H4I was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: HIST1H4I was set to GREEN
Added comment: Histone H4 is a core component of the nucleosome, the basic repeating unit of eukaryotic chromatin. Each nucleosome consists of ~150 bp of DNA wrapped around a histone octamer. Each histone octamer is composed of 2 copies of each of the histones H2A, H2B, H3, H4. This organization is important for DNA replication, transcription and repair.

There are 14 canonical histone H4 genes in the human genome, which despite being different at the nucleotide level encode an identical protein. These cluster in 3 genomic loci. Their transcription is independently regulated with differing expression during brain development and in human tissues.

Histone H4 forms a dimer with H3 (which however has variant isoforms linked to specific cellular processes).

Pathogenic variants in genes encoding H4 have been reported in several individuals. Irrrespective of the gene for H4 involved, all patients presented with highly overlapping features, DD and ID being universal. Available reports to date concern :
- H4C3/HIST1H4C (9 subjects - PMID: 28920961, 35202563),
- H4C11/HIST1H4J (1 subject - PMID: 31804630, 35202563),
- H4C4/HIST1H4D (1 subject - PMID:35202563),
- H4C5/HIST1H4E (17 subjects - PMID: 35202563),
- H4C6/HIST1H4F (1 subject - PMID: 35202563),
- H4C9/HIST1H4I (3 subjects - PMID: 35202563).

Variants in all cases were missense SNVs, occurring (in almost all cases) as dn variants and affecting the same residue in the same and/or different H4 genes (details for clusters below). Eg. Arg45Cys was a recurrent variant for H4C5 (>=7 subjects), while variants affecting Arg40 have been reported in H4C4, H4C5, H4C9, H4C11 (7 subjects overall).

Zebrafish studies for all genes reported have included most - if not all - patient variants and recapitulate features observed in affected individuals (head size/structure and growth).

Additional studies specificaly for H4C3/HIST1H4C have been performed in patient fibroblasts (demonstrating among others transcriptional dysregulation) and zebrafish (accumulation of DSBs, increased apoptosis in head/tail, abn. cell cycle progression).

Note that the nomenclature for variants - at the protein level - used in literature commonly takes into consideration cleavage of Met1, thus the numbering may not correspond to the HGVS one.

Relevant entries exist in OMIM, G2P and SysID only for H4C3/HIST1H4C (Tessadori-van Haaften neurodevelopmental syndrome 1, #619758) and H4C11/HIST1H4J (?Tessadori-van Haaften neurodevelopmental syndrome 2, #619759) but not for other genes.

Rating in PanelApp Australia - ID Panel : HIST1H4C Green, H4J Amber, H4D Amber, H4E Green, H4F Amber, H4I Green.

Please consider inclusion in other possibly relevant panels (microcephaly, short stature/FTT, etc).

------
Initial work from Tessadori et al (incl. DDD study, 2017 - PMID:28920961) identified monoallelic missense SNVs affecting the same residue of H4C3 (HIST1H4C), in 3 individuals from 2 families. [c.274A>C/ HGVS p.(Lys92Gln) dn in 1 subject and c.275A>C/ HGVS p.(Lys92Arg) inherited from unaffected mosaic parent].

Individuals from both families having relevant age had intellectual disability (2/2 - 2 families). Other features incl. growth delay (3/3) and microcephaly (3/3).

Expression of the variants in zebrafish severely affected structural development recapitulating the patient phenotypes (microcephaly and short stature).

RNA sequencing in fibroblasts from 2 unrelated patients and a control, revealed that expression of H4C3 variants was similar to wt. The authors estimated that ~8% of H4 cDNA molecules contained the variant. LC-MS/MS analysis suggested that the mutant protein was present in nucleosomes at a level of 1-2% while RNA-seq identified 115 differential expressed genes, with enrichment for relevant procedures (chr. organization, histone binding, DNA packaging, nucleosomal organization, cell cycle).

Post-translational modifications of Lys92 (H4K91) are highly conserved and have been previously associated with processes from chromatin assembly , DNA damage sensitivity, etc. Post-translational marks on Lys92 (K91) were absent in patient derived cells as a result of each variant.

Zebrafish models for both variants were suggestive for accumulation of double strand breaks (DSBs) more visible in heads and tails of larvae. Embryos expressing mutants displayed increased apoptosis in head and tail. Additional studies in larvae were suggestive of abnormal cell cycle progression (rel. increase in cellls in S/G2/M phase, increased occurrence of activated CHK2 with p53 stabilization) applying to both variants studied.

------
In a subsequent publication, Tessadori et al. (2020 - PMID: 31804630) described the phenotype of a 14 y.o. boy harboring a dn heterozygous missense H4C11 (HIST1H4J) variant following trio-ES [c.274A>G / HGVS p.(Lys92Glu)]. Features incl. profound ID, microcephaly, short stature with some dysmorphic features (uplsanting p-f, hypertelorism, etc). Previous work-up was normal/non-diagnostic and incl. FMR1, MECP2 and a CMA showing an inherited 207 kb CNV involving KCNV1. Upon mRNA microinjection in zebrafish embryos - either for wt or for Lys92Glu HIST1H4J - effect for wt was very mild. Lys92Glu expression led to defective development of head structures (brain, eyes), faulty body axis growth and dysmorphic tail reproducing the microcephaly and short stature phenotype. This was similar to previous zebrafish studies for HIS1H4C variants (above).

------
Tessadori et al. (2022 - PMID: 35202563) describe 29 *additional individuals with de novo missense variants in genes encoding H4, namely:
- H4C3 (HIST1H4C/N=6 subjects),
- H4C11 (HIST1H4J/N=1),
- H4C4 (HIST1H4D/N=1),
- H4C5 (HIST1H4E/N=17),
- H4C6 (HIST1H4F/N=1),
- H4C9 (HIST1H4I/N=3).

All individuals, exhibited DD and ID (29/29). Other features incl. hypotonia (10/29), seizures (5/29), autism (5/29), ataxia (4/29). Abnormal growth incl. progressive microcephaly (2/19 prenatal, 20/29 postnatal onset), short stature/FTT (each 11/29). Few had skeletal features (craniosynostosis 2/29, abn. digits 4/29, vertebral 4/29). Some had visual (17/28) or hearing impairment (7/29). Facial features incl. hypertelorism (5/29), upslanting p-f (3/29), broad nasal tip (11/29), thin upper lip (4/29) and teeth anomalies (6/29 - notably gap between central incisors).

The authors state that the cohort was collected with trio WES but also after data sharing via Genematcher / DECIPHER.

Identified variants were in all cases missense and de novo, the latter either by trio WES or Sanger sequencing of parents.

Previous work-up or presence of additional variants are not discussed.

At the protein level 10 aa were affected, 6 of which recurrently within the same gene (Arg45, His75, Lys91, Tyr98) as well among several genes for H4 (Pro32, Arg40). Variants lied within two clusters, one corresponding to the α-helix of H4 (reported variants affected Lys31 - Arg45) important for DNA contacts, interactions with H3 and histone chaperones. The other within the core of nucleosome (reported patient variants : His75-Tyr98) with important strucural contact between H3-H4 dimer and histone chaperones.

There were no detectable genotype-phenotype patterns separating individual H4 genes or protein regions. Of note, variability was observed even among 7 individuals with the same dn H4C5 variant (Arg45Cys).

All variants were absent from control databases incl. gnomAD and affected residues conserved through to S. cerevisiae. Substitutions affecting Arg45 and Gly94 and His75 have been studied previously with effect in growth/fitness/chromatin remodeling/DNA damage repair depending on variant (5 studies cited).

Zebrafish embryos at the 1 cell stage were injected with mRNA encoding either wt or identified variants, the latter inducing significant developmental defects with the exception of Pro32Ala (H4C3) and Arg40Cys (H4C5, H4C11).

For Pro32Ala and Arg40Cys however, the strong recurrence in this cohort supports pathogenicity. A dosage dependent effect was observed for 2 variants.

H4 genes appear to be tolerant to both missense and loss-of-function variation (the latter even in homozygous form) suggesting a dominant effect of the variants.

------
[RefSeqs : H4C3/HIST1H4C - NM_0035242.4 | H4C4/HIST1H4D - NM_003539.4 | H4C5/HIST1H4E - NM_003545.3 | H4C6/HIST1H4F - NM_003540.4 | H4C9/HIST1H4I - NM_003495.2 | H4C11/HIST1H4J - NM_021968.4 // Variants at the protein level above are according to the HGVS nomenclature. However as the N-terminal methionine is cleaved, numbering relative to the mature peptide has also been used in publications eg. p.Pro33Ala HGVS corresponding to Pro32Ala]
Sources: Literature
Intellectual disability - microarray and sequencing v3.1518 TIAM1 Konstantinos Varvagiannis gene: TIAM1 was added
gene: TIAM1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: TIAM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TIAM1 were set to 35240055; 33328293
Phenotypes for gene: TIAM1 were set to Delayed speech and language development; Global developmental delay; Intellectual disability; Seizures; Behavioral abnormality; Abnormality of the endocrine system; Hypothyroidism; Abnormality of nervous system morphology
Penetrance for gene: TIAM1 were set to Complete
Review for gene: TIAM1 was set to AMBER
Added comment: Lu et al (2022 - PMID: 35240055) describe 5 individuals (from 4 families) with biallelic TIAM1 missense variants.

The phenotype overall corresponded to a neurodevelopmental disorder with DD (5/5), ID (4/4 individuals of relevant age - 3 families), speech delay (5/5), seizures (5/5 - onset: 2m-13y) and behavioral abnormalities (2/2, sibs with autism and ADHD). Several subjects had endocrine symptoms, namely hypothyroidism (N=3 - 2 families), Addison's disease (1) or hypomagnesemia (1). Non-consistent abnormalities were reported in (3/3) subjects who had a brain MRI.

Previous investigations were mentioned for 3 individuals (incl. 2 sibs) and included normal CMA and/or metabolic workup.

Singleton or trio exome sequencing (in one family) revealed biallelic missense TIAM1 variants.

6 different missense variants were reported, all ultra-rare or not present in gnomAD (also o/e:0.2, pLI:0.96), with CADD scores in favor of deleterious effect (NM_001353694.2): c.67C>T/p.Arg23Cys*, c.2584C>T/p.Leu862Phe*, c.983G>T/p.Gly328Val*, c.4640C>A/p.Ala1547Glu, c.1144G>C/p.Gly382Arg, c.4016C>T/p.Ala1339Val.

TIAM1 encodes a RAC1-specific guanine exchange factor (GEF), regulating RAC1 signaling pathways that in turn affect cell shape, migration, adhesion, growth, survival, and polarity, and influence actin cytoskeletal organization, endocytosis, and membrane trafficking. RAC1 signaling plays important role in control of neuronal morphogenesis and neurite outgrowth (based on the summary by Entrez and authors).

TIAM1 is highly expressed in human brain (GTEx).

The authors provide evidence that sif, the Drosophila ortholog, is expressed primarily in neurons of the fly CNS (but not in glia). Using different sif LoF mutant flies they demonstrate that loss of sif impairs viability. Surviving flies exhibited climbing defects and seizure-like behaviors, both significantly rescued upon UAS-sif expression. Neuronal specific sif knockdown resulted in similar phenotypes to ubiquitous knockdown, while glial knockdown did not result in climbing defects.

The semi-lethal phenotype could be fully rescued by expression of the fly sif cDNA, but only partially by human TIAM1 cDNA reference. Upon expression, 3 patient-variants (R23C, L862F, G328V) had variable rescue abilities similar to or lower (R23C) than TIAM1 Ref. TIAM1 Ref and variants could not rescue the neurological phenotypes though. Higher/ectopic expression of sif or TIAM1 Ref was toxic, which was also observed to a lesser extent for variants.

Overall, the evidence provided suggests that the 3 variants tested induce partial LoF.

In a recent study cited (PMID: 33328293), Tiam1 KO mice had simplified dendritic arbors, reduced spine density and diminished excitatory transmission in dentate gyrus. The authors comment that this mouse model presented only subtle behavioral abnormalities which they speculate may be secondary to GEF redundancy (eg. Tiam2).

There is no TIAM1-associated phenotype in OMIM/G2P/SysID. TIAM1 is included in PanelApp Australia in the ID and epilepsy panels with green rating.

Consider inclusion in the current panel with amber rating [As authors discuss: some phenotypic features differed in their small cohort and the contribution of other recessive conditions in 2 consanguineous families cannot be excluded. Also: in fig S1 only status of parents but not of affected/unaffected sibs is specified with the exception of Fam1].
Sources: Literature
Intellectual disability - microarray and sequencing v3.1484 HEXB Arina Puzriakova Phenotypes for gene: HEXB were changed from Sandhoff disease, infantile, juvenile, and adult forms, 268800; GM2-GANGLIOSIDOSIS TYPE 2 (GM2G2) to Sandhoff disease, infantile, juvenile, and adult forms, OMIM:268800
Intellectual disability - microarray and sequencing v3.1216 CLCN3 Zornitza Stark gene: CLCN3 was added
gene: CLCN3 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CLCN3 were set to 34186028
Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CLCN3 was set to Other
Review for gene: CLCN3 was set to GREEN
gene: CLCN3 was marked as current diagnostic
Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available.

The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities:
- Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures.
- Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants.
- Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals.
- Six have mood or behavioural disorders, particularly anxiety (3/6).
- Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia.

The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal.

Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers.

Both loss and gain of function in this gene resulted in the same phenotype.

Green for mono-allelic variants, Amber/Red for bi-allelic.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1167 RING1 Eleanor Williams gene: RING1 was added
gene: RING1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: RING1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RING1 were set to 29386386
Phenotypes for gene: RING1 were set to microcephaly; intellectual disability
Review for gene: RING1 was set to RED
Added comment: Not associated with any phenotype in OMIM.

PMID: 29386386 - Pierce et al 2018 - report a 13 yo female with a de novo RING1 p.R95Q variant and syndromic neurodevelopmental disabilities. Early motor and language development were normal but were delayed after the first year of life. Cognitive testing showed a verbal IQ of 55 and a visual performance IQ of 63. Head circumference at birth was -4.9 SD, and -4.2 SD at age 13 which falls into the severe microcephaly category. C. elegans with either the missense mutation or complete knockout of spat-3 (the suggested RING1 ortholog) were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1094 UFSP2 Konstantinos Varvagiannis changed review comment from: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)].

Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3).

Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2.

The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity.

Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8).

UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided]

UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1).

Additional studies were carried to provide evidence for pathogenicity of this variant.

Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability.

The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization.

Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers.

Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain.

Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants.

Biallelic UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance.

In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes.

You may consider inclusion in the current panel with amber/green rating.
Sources: Literature; to: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)].

Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3).

Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2.

The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity.

Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8).

UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided]

UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1).

Additional studies were carried to provide evidence for pathogenicity of this variant.

Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability.

The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization.

Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers.

Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain.

Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants.

**Monoallelic** (correction to previous review) UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance.

In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes.

You may consider inclusion in the current panel with amber/green rating.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1092 UFSP2 Konstantinos Varvagiannis gene: UFSP2 was added
gene: UFSP2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: UFSP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UFSP2 were set to 33473208
Phenotypes for gene: UFSP2 were set to Abnormal muscle tone; Seizures; Global developmental delay; Delayed speech and language development; Intellectual disability; Strabismus
Penetrance for gene: UFSP2 were set to Complete
Added comment: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)].

Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3).

Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2.

The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity.

Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8).

UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided]

UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1).

Additional studies were carried to provide evidence for pathogenicity of this variant.

Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability.

The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization.

Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers.

Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain.

Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants.

Biallelic UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance.

In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes.

You may consider inclusion in the current panel with amber/green rating.
Sources: Literature
Intellectual disability - microarray and sequencing v3.1034 NEUROD2 Arina Puzriakova gene: NEUROD2 was added
gene: NEUROD2 was added to Intellectual disability. Sources: Literature
Q2_21_rating tags were added to gene: NEUROD2.
Mode of inheritance for gene: NEUROD2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NEUROD2 were set to 16504944; 30323019; 33438828
Phenotypes for gene: NEUROD2 were set to Developmental and epileptic encephalopathy 72, OMIM:618374
Review for gene: NEUROD2 was set to GREEN
Added comment: NEUROD2 is associated with a relevant phenotype in OMIM (MIM# 618374), but is not yet listed in Gene2Phenotype.

- PMID: 30323019 (2019) - Two unrelated children with refractory early-infantile epileptic encephalopathy. Developmental delay (DD) preceded onset of seizures in both cases, with signs of DD becoming evident at 2-4 months and seizures arising at 5 months of age. Patient 1 became seizure-free after introducing a ketogenic diet at 16 months; however, an EEG at 22 months remained abnormal and she continues to have severe GDD with no independent sitting, walking or speaking at the chronological age of 3 years and 2 months. Patient 2 became seizure-free when a vagal nerve stimulator (VNS) was placed at 16 months of age. He displayed significant improvement on EEG and subsequently began regaining neurodevelopmental milestones.
WES revealed different de novo variants in the NEUROD2 gene (P1: c.388G>C, p.E130Q; P2: c.401T>C, p.M134T, respectively). Knockdown of the neurod2 in Xenopus tropicalis tadpoles resulted in abnormal swimming behaviour and progressive seizures followed by periods of immobility. Overexpression of wild-type human NEUROD2 in tadpoles induced non-neuronal cells to differentiate into neurons - on the other hand, overexpression of the mutant alleles failed to to cause any (p.E130Q) or a comparable degree (p.M134T) of ectopic neuronal induction as seen with the wild-type protein.

- Conference poster (Genomics of Rare Disease 2021) - 'Neuronal Differentiation Factor 2 (NEUROD2) Pathogenic Variant as a Molecular Aetiology of Infantile Spasm ' by Sakpichaisakul et al, QSNICH, Thailand -
In a 15 month-old female with infantile spasm, trio exome sequencing revealed a de novo variant in NEUROD2 (c.388G>C, p.E130Q). She was born of non-consanguineous healthy parents with no family history of epilepsy. Poor eye contact and no social smile were noted in the first few months, followed by the first infantile spasm at 5 months of age. This was initially controlled by combined vigabatrin and prednisolone therapy - however relapsing seizures were detected at 15 months. Sequential treatment with vigabatrin following prednisolone resulted in cessation of seizures, and subsequently regaining of neurodevelopmental milestones (sitting without support, grabbing objects without pincer grasp and speaking one single word)

----- Cases without seizures -

- PMID: 33438828 (2021) - Adolescent (14 yrs old) with GDD but without seizures who was found to have a novel de novo NEUROD2 missense variant (c.488 T > C, p.L163P). An additional individual (12 yrs) with DD and a different missense NEUROD2 (c.703G>A, p.A235T) was also identified, but lacking parental samples for segregation analysis.
Functional analysis in Xenopus laevis revealed that injection of the p.L163P mRNA variant resulted in a defective ability to induce ectopic neurons in tadpoles as compared with wild-type NEUROD2 mRNA, while the p.A235T variant functioned similarly to wild-type.
Sources: Literature
Intellectual disability - microarray and sequencing v3.314 LMNB1 Konstantinos Varvagiannis gene: LMNB1 was added
gene: LMNB1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: LMNB1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: LMNB1 were set to 32910914
Phenotypes for gene: LMNB1 were set to Global developmental delay; Intellectual disability; Microcephaly; Short stature; Seizures; Abnormality of the corpus callosum; Cortical gyral simplification; Feeding difficulties; Scoliosis
Penetrance for gene: LMNB1 were set to unknown
Mode of pathogenicity for gene: LMNB1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: LMNB1 was set to GREEN
Added comment: Cristofoli et al (2020 - PMID: 32910914) report 7 individuals (from 5 families) harboring mostly de novo LMNB1 variants.

The common phenotype consisted of primary microcephaly (7/7 ranging from -4.4 to -10 SD), DD/ID (7/7), relative short stature in most (+0.7 to -4 SD). Additional features included brain MRI abnormalities (abnormal CC in 3, simplified gyral pattern in 3, small structurally normal brain, etc), seizures (4 individuals from 2 families), limb spasticity (1/7), cortical visual impairment (in 3), feeding difficulties (5/7), scoliosis (4/7). Non-overlapping dysmorphic features were reported in some.

Variants were identified by WES or custom-designed gene panel and included 3 missense variants, 1 in-frame deletion and a splice variant. The in-frame deletion was inherited from a similarly affected parent in whom the variant occurred as a dn event. The splice SNV(NM_005573.3:c.939+1G>A) occurred in 3 sibs and was present as mosaic variant (15%) in the parent. This variant was predicted to result to extension of exon 5 by 6 amino-acids (samples were unavailable for mRNA studies).

LMNB1 encodes a B-type lamin (the other being encoded by LMNB2). A- and B- type lamins are major components of the nuclear lamina. As the authors comment, LMNB1 is expressed in almost all cell types beginning at the earliest stages of development.

Lamin-deficient mouse models support an essential role of B-type lamins in organogenesis, neuronal migration, patterning during brain development.

Functional studies performed, demonstrated impaired formation of LMNB1 nuclear lamina in LMNB1-null HeLa cells transfected with cDNAs for 3 missense variants.

Two variants (Lys33Glu/Arg42Trp) were shown to result in decreased nuclear localization with increased abundance in the cytosolic fraction. In patient derived LCLs these variants led to abnormal nuclear morphology. A missense variant in another domain (Ala152Gly - 1st coil domain) resulted also in lower abundance of lamin B1, irregular lamin A/C nuclear lamina, as well as more condensed nuclei (HeLa cells).

LMNB1 duplications or missense mutations increasing LMNB1 expression are associated with a different presentation of AD leuodystrophy. A variant previously associated with leukodystrophy (Arg29Trp) was shown to behave differently (present in the nuclear extract but not in the cytosol, lamin B1 to A/C ratio in nuclear extract was not significantly altered compared to wt as was the case for Arg42Trp, Lys33Glu).

Given the pLI score of 0.55 as well as the phenotype of individuals with deletions (not presenting microcephaly) the authors predict that a dominant-negative effect applies (rather than haploinsufficiency).

Consider inclusion in the following panels : DD/ID (green), epilepsy (amber - 4 of 7 patients belonging to 2 families), primary microcephaly (green), callosome (amber/green - 3 individuals belonging to 3 families), mendeliome (green), etc.
Sources: Literature
Intellectual disability - microarray and sequencing v3.170 PAX1 Konstantinos Varvagiannis gene: PAX1 was added
gene: PAX1 was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: PAX1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PAX1 were set to 29681087; 23851939; 28657137
Phenotypes for gene: PAX1 were set to Otofaciocervical syndrome 2, 615560
Penetrance for gene: PAX1 were set to Complete
Review for gene: PAX1 was set to AMBER
Added comment: Biallelic PAX1 pathogenic variants cause Otofaciocervical syndrome 2 (OMIM 615560).

Brief review of the literature suggests 3 relevant publications to date (04-07-2020).

2 individuals with DD and ID have been reported (Patil et al, 2018 - PMID: 29681087 and Pohl et al, 2013 - PMID: 23851939). Other subjects reported were only evaluated as newborns(mostly)/infants [Paganini et al, 2017 - PMID: 28657137, Patil et al, 2018 - PMID: 29681087].

While the first report by Pohl et al identified a homozygous missense variant supported by functional studies [NM_006192.5:c.497G>T - p.(Gly166Val)] subsequent ones identified homozygosity for pLoF mutations [Patil et al: NM_006192.4:c.1173_1174insGCCCG / Paganini et al: NM_006192:c.1104C>A - p.(Cys368*)].

As discussed by Pohl et al:

PAX1 encodes a transcription factor with critical role in pattern formation during embryogenesis. Study of the mouse Gly157Val (equivalent to human Gly166Val) Pax1 variant suggested reduced binding affinity (reduced transactivation of a regulatory sequence of the Nkx3-2 promoter) and hypofunctional nature of this variant.

Mouse models seem to recapitulate features of the disorder (skeletal, immunodeficiency) while the role of Pax1 in hearing process was thought to be supported by early expression (P6) in mouse cochlea.

Overall this gene can be considered for inclusion in the ID panel with amber/green rating.
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v3.170 EXOC2 Konstantinos Varvagiannis gene: EXOC2 was added
gene: EXOC2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: EXOC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOC2 were set to 32639540
Phenotypes for gene: EXOC2 were set to Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology
Penetrance for gene: EXOC2 were set to Complete
Review for gene: EXOC2 was set to AMBER
Added comment: Van Bergen et al (2020 - PMID: 32639540) report on 3 individuals from 2 families, harboring biallelic EXOC2 mutations.

Clinical presentation included DD, ID (severe in 2 subjects from fam1, borderline intellectual functioning in fam2), dysmorphic features and brain abnormalities. Cerebellar anomalies were common to all with a molar tooth sign observed in one (1/3). Other findings limited to subjects from one family included acquired microcephaly, congenital contractures, spastic quadriplegia (each observed 2/3).

Previous investigations were in all cases non-diagnostic. WES identified biallelic EXOC2 mutations in all affected individuals.

EXOC2 encodes an exocyst subunit. The latter is an octameric complex, component of the membrane transport machinery, required for tethering and fusion of vesicles at the plasma membrane. As discussed ,vesicle transport is important for the development of brain and the function of neurons and glia. Exocyst function is also important for delivery of Arl13b to the primary cilium (biallelic ARL13B mutations cause Joubert syndrome 8) and ciliogenesis.

Affected subjects from a broader consanguineous family (fam1) were homozygous for a truncating variant. Fibroblast studies revealed mRNA levels compatible with NMD (further restored in presence of CHX) as well as reduced protein levels. The female belonging to the second non-consanguineous family was found to harbor 2 missense variants in trans configuration.

An exocytosis defect was demonstrated in fibroblasts from individuals belonging to both families. Ciliogenesis appeared to be normal, however Arl13b localization/recruitment to the cilia was reduced compared with control cells with the defect rescued upon exogenous expression of wt EXOC2.

Mutations in other genes encoding components of the exocyst complex have been previously reported in individuals with relevant phenotypes (e.g. EXOC8 in a boy with features of Joubert s. or EXOC4 in nephrotic syndrome).

The authors discuss on the essential role of EXOC2 based on model organism studies (e.g. impaired neuronal membrane traffic, failure of neuronal polarization and neuromuscular junction expansion seen in Drosophila Sec5 (EXOC2) null mutants).
Sources: Literature
Intellectual disability - microarray and sequencing v3.77 AGMO Rebecca Foulger changed review comment from: PMID:31555905. Okur et al., report rare nonsense in-frame deletion and missense compound heterozygous variants in AGMO in 2 unrelated individuals (8 year old European girl, and 4-year old Ashkenazi Jewish boy). They demonstrated significantly diminished enzyme activity for all disease-associated variants. The girl harboured variants p.Trp130Ter & p.Gly238Cys. The boy harboured variants p.Gly144Arg and p.Tyr236del. Note that there is one individual in gnomAD who is homozygous for the p.Gly144Arg variant. Table 1 also mentions MTHFR C677T homozygous for the boy, but this is not referred to within the text. ID/DD (and seizures) was reported in the girl. The boy showed normal development to begin, but began to regress age 3.5 years.; to: PMID:31555905. Okur et al., report rare nonsense in-frame deletion and missense compound heterozygous variants in AGMO in 2 unrelated individuals (8 year old European girl, and 4-year old Ashkenazi Jewish boy). They demonstrated significantly diminished enzyme activity for all disease-associated variants. The girl harboured variants p.Trp130Ter & p.Gly238Cys. The boy harboured variants p.Gly144Arg and p.Tyr236del. Note that there is one individual in gnomAD who is homozygous for the p.Gly144Arg variant. Table 1 also mentions MTHFR C677T homozygous for the boy, but this is not referred to within the text. ID/DD (and seizures) were reported in the girl. The boy showed normal development to begin, but began to regress age 3.5 years.
Intellectual disability - microarray and sequencing v3.76 AGMO Rebecca Foulger commented on gene: AGMO: PMID:31555905. Okur et al., report rare nonsense in-frame deletion and missense compound heterozygous variants in AGMO in 2 unrelated individuals (8 year old European girl, and 4-year old Ashkenazi Jewish boy). They demonstrated significantly diminished enzyme activity for all disease-associated variants. The girl harboured variants p.Trp130Ter & p.Gly238Cys. The boy harboured variants p.Gly144Arg and p.Tyr236del. Note that there is one individual in gnomAD who is homozygous for the p.Gly144Arg variant. Table 1 also mentions MTHFR C677T homozygous for the boy, but this is not referred to within the text. ID/DD (and seizures) was reported in the girl. The boy showed normal development to begin, but began to regress age 3.5 years.
Intellectual disability - microarray and sequencing v3.35 UGDH Konstantinos Varvagiannis gene: UGDH was added
gene: UGDH was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: UGDH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UGDH were set to 32001716
Phenotypes for gene: UGDH were set to Epileptic encephalopathy, early infantile, 84 - MIM #618792
Penetrance for gene: UGDH were set to Complete
Review for gene: UGDH was set to GREEN
Added comment: Hengel et al (2020 - PMID: 32001716) report on 36 individuals with biallelic UGDH pathogenic variants.

The phenotype corresponded overall to a developmental epileptic encephalopathy with hypotonia, feeding difficulties, severe global DD, moderate or commonly severe ID in all. Hypotonia and motor disorder (incl. spasticity, dystonia, ataxia, chorea, etc) often occurred prior to the onset of seizures. A single individual did not present seizures and 2 sibs had only seizures in the setting of fever.

Affected subjects were tested by exome sequencing and UGDH variants were the only/best candidates for the phenotype following also segregation studies. Many were compound heterozygous or homozygous (~6 families were consanguineous) for missense variants and few were compound heterozygous for missense and pLoF variants. There were no individuals with biallelic pLoF variants identified. Parental/sib studies were all compatible with AR inheritance mode.

UGDH encodes the enzyme UDP-glucose dehydrogenase which converts UDP-glucose to UDP-glucuronate, the latter being a critical component of the glycosaminoglycans, hyaluronan, chondroitin sulfate, and heparan sulfate [OMIM].

Patient fibroblast and biochemical assays suggested a LoF effect of variants leading to impairment of UGDH stability, oligomerization or enzymatic activity (decreased UGDH-catalyzed reduction of NAD+ to NADH / hyaluronic acid production which requires UDP-glucuronate).

Attempts to model the disorder using an already developped zebrafish model (for a hypomorphic LoF allele) were unsuccessful as fish did not exhibit seizures spontaneously or upon induction with PTZ.

Modelling of the disorder in vitro using patient-derived cerebral organoids demonstrated smaller organoids due to reduced number of proliferating neural progenitors.
Sources: Literature
Intellectual disability - microarray and sequencing v3.35 YIF1B Konstantinos Varvagiannis gene: YIF1B was added
gene: YIF1B was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: YIF1B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YIF1B were set to 32006098
Phenotypes for gene: YIF1B were set to Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement
Penetrance for gene: YIF1B were set to Complete
Review for gene: YIF1B was set to GREEN
Added comment: AlMuhaizea et al (2020 - PMID: 32006098) report on the phenotype of 6 individuals (from 5 families) with biallelic YIF1B truncating variants.

Affected subjects presented hypotonia, failure to thrive, microcephaly (5/6), severe global DD and ID (as evident from best motor/language milestones achieved - Table S1) as well as features suggestive of a motor disorder (dystonia/spasticity/dyskinesia). Seizures were reported in 2 unrelated individuals (2/6). MRI abnormalities were observed in some with thin CC being a feature in 3.

Variable initial investigations were performed including SNP CMA, MECP2, microcephaly / neurotransmitter disorders gene panel testing did not reveal P/LP variants.

YIF1B variants were identified in 3 families within ROH. Following exome sequencing, affected individuals were found to be homozygous for truncating variants (4/5 families being consanguineous). The following 3 variants were identified (NM_001039672.2) : c.186dupT or p.Ala64fs / c.360_361insACAT or p.Gly121fs / c.598G>T or p.Glu200*.

YIF1B encodes an intracellular transmembrane protein.

It has been previously demonstrated that - similarly to other proteins of the Yip family being implicated in intracellular traffic between the Golgi - Yif1B is involved in the anterograde traffic pathway. Yif1B KO mice demonstrate a disorganized Golgi architecture in pyramidal hippocampal neurons (Alterio et al 2015 - PMID: 26077767). The rat ortholog interacts with serotonin receptor 1 (5-HT1AR) with colocalization of Yif1BB and 5-HT1AR in intermediate compartment vesicles and involvement of the former in intracellular trafficing/modulation of 5-HT1AR transport to dendrites (PMID cited: 18685031).

Available mRNA and protein expression data (Protein Atlas) suggest that the gene is widely expressed in all tissues incl. neuronal cells. Immunochemistry data from the Human Brain Atlas also suggest that YIF1B is found in vesicles and localized to the Golgi apparatus. Immunohistochemistry in normal human brain tissue (cerebral cortex) demonstrated labeling of neuronal cells (Human Protein Atlas).

Functional/network analysis of genes co-regulated with YIF1B based on available RNAseq data, suggest enrichement in in genes important for nervous system development and function.

Please consider inclusion in other panels that may be relevant (e.g. microcephaly, etc).
Sources: Literature
Intellectual disability - microarray and sequencing v3.35 CDC42BPB Konstantinos Varvagiannis gene: CDC42BPB was added
gene: CDC42BPB was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: CDC42BPB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CDC42BPB were set to 32031333
Phenotypes for gene: CDC42BPB were set to Central hypotonia; Global developmental delay; Intellectual disability; Seizures; Autistic behavior; Behavioral abnormality
Penetrance for gene: CDC42BPB were set to unknown
Review for gene: CDC42BPB was set to GREEN
Added comment: Chilton et al (2020 - PMID: 32031333) report on 14 individuals with missense and loss-of-function CDC42BPB variants.

Features included hypotonia (8/11), DD (12/13 - the 14th was a fetus), ID (7/13), ASD (8/12), clinical seizures (in 3 - a 4th had abnormal EEG without seizures), behavioral abnormalities. Variable non-specific dysmorphic features were reported in some (sparse hair being the most frequent - 4/8). Additional features were observed in few (=<4) incl. cryptorchidism, ophthalmological issues, constipation, kidney abnormalities, micropenis, etc.

All individuals had non-diagnostic prior genetic testing (incl. CMA, FMR1, MECP2, Angelman/Prader-Willi methylation studies, autism gene panel - suggesting relevance to the current panel) or metabolic testing.

Variants were identified following clinical exome sequencing with Sanger confirmation. Most occurred as de novo events (11/14) while inheritance was not available for few (3/14). Missense variants did not display (particular) clustering.

Almost all variants were absent from gnomAD and were predicted to be deleterious in silico (among others almost all had CADD scores >25).

As the authors comment, CDC42BPB encodes myotonic dystrophy-related Cdc42-binding kinase β (MRCKβ) a serine/threonine protein kinase playing a role in regulation of cytoskeletal reorganization and cell migration in nonmuscle cells (through phosporylation of MLC2).

Previous studies have demonstrated that it is ubiquitously expressed with prenatal brain expression.

The gene appears to be intolerant to pLoF (pLI of 1) as well as to missense variants (Z-score of 3.66).

CDC42BPB is a downstream effector of CDC42. Mutations of the latter cause Takenouchi-Kosaki syndrome with DD/ID and some further overlapping features (with CDC42BPB-associated phenotypes).

Homozygous Cdc42bpb KO in mouse appears to be nonviable (MGI:2136459). Loss of gek in the eyes of Drosophila results in disrupted growth cone targeting to the lamina (gek is the fly CDC42BPB ortholog).

Please consider inclusion with amber / green rating in the ID panel (>=4 relevant individuals / variants) and other panels (e.g. for epilepsy, ASD).
Sources: Literature
Intellectual disability - microarray and sequencing v3.34 ADAM22 Rebecca Foulger commented on gene: ADAM22: PMID:27066583. Muona et al., 2016 report a Finnish proband-parent-trio with intractable seizures and ID. Compound het variants c.1202G>A, p.Cys401Tyr and c.2396delG, p.Ser799IlefsTer96 were found in ADAM22. Functional assays showed that mutant proteins failed to form the LGI1-ADAM22 ligand-receptor complex. The variants are unlikely to be full LOF.
Intellectual disability - microarray and sequencing v3.0 DLL1 Konstantinos Varvagiannis gene: DLL1 was added
gene: DLL1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DLL1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DLL1 were set to 31353024
Phenotypes for gene: DLL1 were set to Global developmental delay; Intellectual disability; Morphological abnormality of the central nervous system; Seizures; Behavioral abnormality; Autism; Scoliosis
Penetrance for gene: DLL1 were set to unknown
Review for gene: DLL1 was set to GREEN
Added comment: Heterozygous DLL1 pathogenic variants cause Neurodevelopmental disorder with nonspecific brain abnormalities and with or without seizures (# 618709).

Fischer-Zirnsak et al (2019 - PMID: 31353024) reported on 15 affected individuals from 12 unrelated families.

Most common features included DD/ID (12/14), ASD (6/14 - belonging to 6 families) or other behavioral abnormalities, seizures (6/14 - from 6 unrelated families) and various brain MRI abnromalities. As commented by OMIM (based on the same ref) "Cognitive function ranges from severely impaired to the ability to attend schools with special assistance". Among other features, scoliosis was observed in 4. The authors could not identify a distinctive facial gestalt.

Variable initial investigations (where discussed/performed - also suggesting relevance to the current panel) included CMA, FMR1, FLNA, mitochondrial DNA analysis and metabolic work-up but had not revealed an alternative cause.

The DLL1 variants were identified by WES (with the exception of a 122-kb microdeletion spanning DLL1 and FAM120B detected by CMA). Nonsense, frame-shift, splice-site variants in positions predicted to result to NMD were identified in most. One individual was found to harbor a missense variant (NM_005618.3:c.536G>T / p.Cys179Phe) and another the aforementioned microdeletion.

The variant in several individuals had occurred as a de novo event. In 2 families, it was inherited from an also affected parent (an unaffected sib was non-carrier) while in 3 families parental studies were not possible/complete.

In frame insertion of 4 residues was demonstrated for a splice site variant, from LCLs of the corresponding individual. For another individual, material was unavailable for mRNA studies. The missense variant affected a cysteine (of the DSL domain) conserved in all Notch ligands while AA changes affecting the same position of JAG1 (another Notch ligand) have been described in patients with Alagille s.

Based on the variants identified and reports of deletions spanning DLL1 in the literature, haploinsufficiency is the proposed underlying mechanism. The gene has also a pLI of 1 and %HI of 4.65.

DLL1 encodes the Delta-like canonical Notch ligand 1. Notch signaling is an established pathway for brain morphogenesis. Previous in vivo and in vitro studies have demonstrated the role of DLL1 in CNS. The gene is highly expressed in neuronal precursor cells during embryogenesis. Expression of Dll1 (and other molecules of the Notch signalling pathway) in an oscillatory/sustained pattern and cell-cell interactions important for this pathway have been demonstrated to play a role in neuronal differentiation. [Most discussed by Fischer-Zirnsak et al with several refs provided / also Gray et al., 1999 - PMID: 10079256 & OMIM].

Animal models as summarized by the authors:
[Mouse] Loss of Dll1 in mice has been shown to increase neuronal differentiation, cause CNS hyperplasia and increased number of neurons (PMIDs cited: 9109488, 12397111, 20081190). Reduced Dll1 expression was associated with scoliosis and mild vertebral defects (cited PMIDs: 19562077, 14960495, 22484060 / among others Dll1 haploinsufficiency and dominant negative models studied). Scoliosis and vertebral segmentation defects were features in 4 and 1 individual, respectively in the cohort of 15.
[Zebrafish] Homozygous mutations in dlA, the zebrafish ortholog, disrupted the Delta-Notch signaling and led to patterning defects in the hindbrain and overproduction of neurons (cited: 15366005).

Please consider inclusion in other possibly relevant panels e.g. for ASD.
Sources: Literature
Intellectual disability - microarray and sequencing v2.1135 SNX27 Konstantinos Varvagiannis gene: SNX27 was added
gene: SNX27 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: SNX27 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNX27 were set to 25894286; 31721175; 21300787; 23524343
Phenotypes for gene: SNX27 were set to Generalized hypotonia; Global developmental delay; Intellectual disability; Seizures
Penetrance for gene: SNX27 were set to Complete
Review for gene: SNX27 was set to GREEN
gene: SNX27 was marked as current diagnostic
Added comment: Evidence from 2 publications suggests that DD, ID and seizures are part of the phenotype of individuals with biallelic SNX27 pathogenic variants :
---------
Damseh, Danson et al (2015 - PMID: 25894286) first reported on a consanguineous family with 4 affected sibs, homozygous for an SNX27 pathogenic variant. Features incl. hypotonia soon after birth, failure to thrive, severely delayed psychomotor development with no milestone acquisition, occurrence of myoclonic seizures with 3 individuals deceased early. Exome sequencing in one revealed a few candidate variants, with an SNX27 frameshift one [NM_030918.6:c.515_516del - p.(His172Argfs*6) / absent from ExAC] being the only retained following Sanger segregation studies. Using fibroblasts from an affected individual, Western blot with an antibody which would also bind prior to the truncation site, was consistent with dramatically reduced/absent SNX27 truncated mutant protein. Protein levels of VPS35, a component of the retromer responsible for direct cargo binding (not mediated by a cargo adaptor as SNX27), were normal.
---------
Parente et al (2019 - PMID: 31721175) reported on a 13-year-old male with motor and language delay, ADHD, ID (kindergarten academic level at the age of 13) and seizures with onset at the age of 9 years (GTC, with abnormal EEG and postical SV tachycardia). Variable physical findings were reported. White matter hyperintesities were noted upon initial brain MRI (but were less marked in subsequent ones). Initial genetic testing (Alexander's disease, CMA, FMR1) was normal. Exome revealed compound heterozygosity for 2 SNX27 variants (NM_030918.5/NM_001330723.1 both apply c.510C>G - p.Tyr170* and c.1295G>A - p.Cys432Tyr) each inherited from healthy carrier parents. There were no other potentially causative variants. A parental history of - isolated - late onset seizures was reported (so this individual may not be considered for the seizure phenotype here).

The authors also reported on a further 31-year old affected male. This individual had infantile hypotonia, poor eye contact with subsequent significant DD, seizures (febrile/afebrile T-C with onset at the age of 14m) and ID estimated in the severe range. Variable - though somewhat different - physical findings were reported. Initial work-up included basic metabolic testing, standard karyotype, FISH for 15q11 and subtelomeric regions and PHF6 genetic testing - all normal. Exome (and subsequent Sanger confirmation/parental studies) revealed compound heterozygosity for a missense and a frameshift variant (c.989G>A / p.Arg330His and c.782dupT / p.Leu262Profs*6 same in NM_001330723.1, NM_030918.6).
---------
SNX27 encodes sorting nexin 27, a cargo adaptor for the retromer. The latter is a multi-protein complex essential for regulating the retrieval and recycling of transmembrane cargos from endosomes to the trans-Golgi network or the plasma membrane [Lucas et al 2016 - PMID: 27889239 / McNally et al 2018 - PMID: 30072228].

As summarized by Parente et al, the encoded protein by regulating composition of the cell surface influences several processes eg. neuronal excitability, synaptic plasticity, Wnt signaling etc. It has been shown to interact with surface receptors and their ligands including GIRK channels, 5-HT4, ionotropic glutamate receptors (incl. NMDA- and AMPA-type receptors) and mGluR5 [several refs. provided].

Knockout of Snx27 in mice resulted in embryonic lethality (16% hmz of the 25% expected), severe postnatal growth retardation and death within the first 3 weeks. Snx27(+/-) mice have normal neuroanatomy but exhibit cognitive deficits (in learning and memory) and defects in synaptic function/plasticity with reduced amounts of NMDA and AMPA receptors (Cai et al - PMID: 21300787, Wang et al - PMID: 23524343).
---------
The gene is included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx) and a current primary ID gene in SysID. There is no associated phenotype in OMIM/G2P.
Sources: Literature
Intellectual disability - microarray and sequencing v2.1102 DMXL2 Konstantinos Varvagiannis changed review comment from: This gene can be considered for upgrade to green rating (ID and epilepsy with >=4 relevant individuals/families/variants and >=2 studies, role of the protein, effect of variants in most cases demonstrated, phenotypic similarities with other disorders affecting autophagy, some evidence from animal models, etc).

Rare heterozygous variants disrupting DMXL2 (intragenic losses/gains, SNVs, CNVs affecting also additional genes) have been reported in individuals with variable neurodevelopmental disorders (ASD and ID) or psychiatric phenotypes [Costain et al. 2019 - PMID: 30732576 - summarized in Table 1]. (Highly) variable expressivity and possibly incomplete penetrance were proposed in the respective study. As a result evidence for ID/seizures due to monoallelic variants appears to be relatively limited.

DD, ID and (probably) epilepsy appear however to be features in several individuals with biallelic pathogenic variants as summarized in the studies below.

OMIM recently added a relevant entry with the DMXL2-associated phenotypes being the following:
- Epileptic encephalopathy, early infantile, 81; EIEE81 - 618663 (AD) [based on refs 2,3]
- ?Deafness, autosomal dominant 71 - 617605 (AD) [DD/ID/seizures are not part of the phenotype]
- ?Polyendocrine-polyneuropathy syndrome - 616113 (AR) [based on ref1]

DMXL2 is not associated with any phenotype in G2P. In SysID it is listed as a candidate ID gene based on the report by Tata et al (ref1). This gene is included in some gene panels for ID.

[1] Tata el al. (2014 - PMID: 25248098) reported on 3 sibs born to consanguineous Senegalese parents, presenting with a progressive endocrine and neurodevelopmental disorder. Features incl. incomplete puberty, central hypothyroidism, abnormal glucose regulation, moderate ID (3/3) and peripheral polyneuropathy. Seizures were not part of the phenotype. Linkage analysis suggested 2 candidate regions on chromosomes 13 and 15 with a LOD score of 2.5. High throughput sequencing of genes within these regions (~500) in an affected member and parent revealed a 15 bp in-frame deletion of DMXL2 (NM_015263.4:c.5827_5841del / p.Asp1943_Ser1947del). Sanger sequencing of other affected and unaffected members supported AR inheritance. RT-qPCR demonstrated that DMXL2 mRNA levels in blood lymphocytes were significantly lower in homozygous patients compared to heterozygous or wt family members or controls. The authors demonstrated that the encoded protein (rabconnectin-3a) is a synaptic protein (expressed in exocytosis vesicles) at the ends of axons of GnRH producing neurons. Neuron-specific deletion of one allele in mice resulted in delayed puberty and very low fertility. Adult mice had lower number of GnRH neurons in hypothalamus. siRNA-mediated downregulation of Dmxl2 expression in an insulin-secreting cell line resulted in only slight insulin secretion in response to augmenting concentrations of glucose, providing evidence of involvement of the protein in control of regulated insulin secretion.
-----------
[2] Maddirevula et al. (2019 - PMID: 30237576) reported briefly on a 36 months old boy, born to consanguineous parents, homozygous for a frameshift DMXL2 variant [individual 17-3220 | NM_001174117.1:c.4349_4350insTTACATGA or p.(Glu1450Aspfs*23)]. Features included focal seizures (onset at the age of 3m) with subsequent global DD, absent eye contact, cerebral atrophy and macrocephaly. This individual was identified following re-evaluation of exome data in a database of ~1550 exomes specifically for homozygous variants that would have been classified earlier as LP/P if the respective gene had sufficient evidence for association with a disorder. The family was not reported to have other affected members. As the authors noted, the boy was not known to have the multi-endocrine abnormalities reported by Tata et al. There are no additional information provided (eg. on confirmation of variants, etc).
-----------
[3] Esposito et al. (2019 - PMID: 31688942) report on 3 sibling pairs (all 3 families unrelated) with biallelic DMXL2 mutations and summarize previous evidence on the gene and the DMXL2-related phenotypes.

All presented a highly similar phenotype of Ohtahara syndrome (seizures with onset in the first days of life, tonic/myoclonic/occasionaly focal, burst-suppression upon EEG), profound DD/ID, quadriparesis, sensorineural hearing loss and presence of dysmorphic features. Sibs from 2 families presented evidence of peripheral polyneuropathy. Early brain MRIs revealed thin CC and hypomyelination in all, with later scans suggestive of gray and white matter shrinkage with leukoencephalopathy. None achieved developmental skills following birth with 5/6 deceased by the age of 9 years.

Exome sequencing revealed biallelic DMXL2 variants in all, with compatible parental segregation studies (NM_015263.3):
- Fam1 (2 sibs) : c.5135C>T (p.Ala1712Val) in trans with c.4478C>G (p.Ser1493*)
- Fam2 (2 sibs) : homozygosity for c.4478C>A (p.Ser1493*)
- Fam3 (2 sibs) : homozygosity for c.7518-1G>A

Heterozygous parents (aged 39-59) did not exhibit hearing impairment [report of a single multigenerational family by Chen et al (2017 - PMID: 27657680) where a heterozygous missense variant segregated with hearing loss - respective OMIM entry: ?Deafness, autosomal dominant 71 - 617605].

In patients' fibroblasts, effect of the variants on mRNA/protein expression was demonstrated with mRNA expressed only in a patient from family 1, and degraded/absent for the 2 stopgain SNVs affecting codon 1493. Skipping of ex31 leading to frameshift/introduction of a PTC was shown for the splice variant (p.Trp2508Argfs*4 secondary to c.7518-1G>A). Protein was also absent upon western-blot.

DMXL2 encodes a vesicular protein, DmX-Like protein 2 or rabconnectin-3a (cited Tata et al).

The gene is expressed in brain ( https://www.gtexportal.org/home/gene/DMXL2 ).

As Esposito et al comment, it is known to regulate the trafficking and activity of v-ATPase the latter having a role in acidifying intracellular organelles and promoting endosomal maturation (cited PMIDs : 25248098, 19758563, 22875945, 24802872).

In line with this, staining of patients' fibroblasts using the acidotropic dye LysoTracker demonstrated increased signal, reversed by re-expression of DMXL2 protein. Overall an acidic shift in pH with impairment of lysosomal structures and function was suggested. The authors provided additional evidence for altered lysosomal function and associated autophagy with accumulation of autophagy receptors (eg p62) and substrates (polyubiquitinated proteins). Vacuolization and accumulation of atypical fusion-like structures was shown upon ultrastractural analysis.

shRNA-mediated downregulation/silencing of Dmxl2 in mouse hippocampal neurons resulted also in altered lysosomal structures and defective autophagy. The neurons exhibited impaired neurite elongation and synapse formation.

The authors suggest similarities with Vici syndrome, where biallelic EPG5 mutations result in autophagic defects and clinical manifestations of DD/ID/epilepsy.

Dmxl2 homozygous ko mice display embryonic lethality with heterozygous mice displaying macrocephaly and corpus callosum dysplasia (cited PMIDs: 25248098, 30735494) .; to: This gene can be considered for upgrade to green rating (ID and epilepsy with >=4 relevant individuals/families/variants and >=2 studies, role of the protein, effect of variants in most cases demonstrated, phenotypic similarities with other disorders affecting autophagy, some evidence from animal models, etc).

Rare heterozygous variants disrupting DMXL2 (intragenic losses/gains, SNVs, CNVs affecting also additional genes) have been reported in individuals with variable neurodevelopmental disorders (ASD and ID) or psychiatric phenotypes [Costain et al. 2019 - PMID: 30732576 - summarized in Table 1]. (Highly) variable expressivity and possibly incomplete penetrance were proposed in the respective study. As a result evidence for ID/seizures due to monoallelic variants appears to be relatively limited.

DD, ID and (probably) epilepsy appear however to be features in several individuals with biallelic pathogenic variants as summarized in the studies below.

OMIM recently added a relevant entry with the DMXL2-associated phenotypes being the following:
- Epileptic encephalopathy, early infantile, 81; EIEE81 - 618663 (AR) [based on refs 2,3]
- ?Deafness, autosomal dominant 71 - 617605 (AD) [DD/ID/seizures are not part of the phenotype]
- ?Polyendocrine-polyneuropathy syndrome - 616113 (AR) [based on ref1]

DMXL2 is not associated with any phenotype in G2P. In SysID it is listed as a candidate ID gene based on the report by Tata et al (ref1). This gene is included in some gene panels for ID.

[1] Tata el al. (2014 - PMID: 25248098) reported on 3 sibs born to consanguineous Senegalese parents, presenting with a progressive endocrine and neurodevelopmental disorder. Features incl. incomplete puberty, central hypothyroidism, abnormal glucose regulation, moderate ID (3/3) and peripheral polyneuropathy. Seizures were not part of the phenotype. Linkage analysis suggested 2 candidate regions on chromosomes 13 and 15 with a LOD score of 2.5. High throughput sequencing of genes within these regions (~500) in an affected member and parent revealed a 15 bp in-frame deletion of DMXL2 (NM_015263.4:c.5827_5841del / p.Asp1943_Ser1947del). Sanger sequencing of other affected and unaffected members supported AR inheritance. RT-qPCR demonstrated that DMXL2 mRNA levels in blood lymphocytes were significantly lower in homozygous patients compared to heterozygous or wt family members or controls. The authors demonstrated that the encoded protein (rabconnectin-3a) is a synaptic protein (expressed in exocytosis vesicles) at the ends of axons of GnRH producing neurons. Neuron-specific deletion of one allele in mice resulted in delayed puberty and very low fertility. Adult mice had lower number of GnRH neurons in hypothalamus. siRNA-mediated downregulation of Dmxl2 expression in an insulin-secreting cell line resulted in only slight insulin secretion in response to augmenting concentrations of glucose, providing evidence of involvement of the protein in control of regulated insulin secretion.
-----------
[2] Maddirevula et al. (2019 - PMID: 30237576) reported briefly on a 36 months old boy, born to consanguineous parents, homozygous for a frameshift DMXL2 variant [individual 17-3220 | NM_001174117.1:c.4349_4350insTTACATGA or p.(Glu1450Aspfs*23)]. Features included focal seizures (onset at the age of 3m) with subsequent global DD, absent eye contact, cerebral atrophy and macrocephaly. This individual was identified following re-evaluation of exome data in a database of ~1550 exomes specifically for homozygous variants that would have been classified earlier as LP/P if the respective gene had sufficient evidence for association with a disorder. The family was not reported to have other affected members. As the authors noted, the boy was not known to have the multi-endocrine abnormalities reported by Tata et al. There are no additional information provided (eg. on confirmation of variants, etc).
-----------
[3] Esposito et al. (2019 - PMID: 31688942) report on 3 sibling pairs (all 3 families unrelated) with biallelic DMXL2 mutations and summarize previous evidence on the gene and the DMXL2-related phenotypes.

All presented a highly similar phenotype of Ohtahara syndrome (seizures with onset in the first days of life, tonic/myoclonic/occasionaly focal, burst-suppression upon EEG), profound DD/ID, quadriparesis, sensorineural hearing loss and presence of dysmorphic features. Sibs from 2 families presented evidence of peripheral polyneuropathy. Early brain MRIs revealed thin CC and hypomyelination in all, with later scans suggestive of gray and white matter shrinkage with leukoencephalopathy. None achieved developmental skills following birth with 5/6 deceased by the age of 9 years.

Exome sequencing revealed biallelic DMXL2 variants in all, with compatible parental segregation studies (NM_015263.3):
- Fam1 (2 sibs) : c.5135C>T (p.Ala1712Val) in trans with c.4478C>G (p.Ser1493*)
- Fam2 (2 sibs) : homozygosity for c.4478C>A (p.Ser1493*)
- Fam3 (2 sibs) : homozygosity for c.7518-1G>A

Heterozygous parents (aged 39-59) did not exhibit hearing impairment [report of a single multigenerational family by Chen et al (2017 - PMID: 27657680) where a heterozygous missense variant segregated with hearing loss - respective OMIM entry: ?Deafness, autosomal dominant 71 - 617605].

In patients' fibroblasts, effect of the variants on mRNA/protein expression was demonstrated with mRNA expressed only in a patient from family 1, and degraded/absent for the 2 stopgain SNVs affecting codon 1493. Skipping of ex31 leading to frameshift/introduction of a PTC was shown for the splice variant (p.Trp2508Argfs*4 secondary to c.7518-1G>A). Protein was also absent upon western-blot.

DMXL2 encodes a vesicular protein, DmX-Like protein 2 or rabconnectin-3a (cited Tata et al).

The gene is expressed in brain ( https://www.gtexportal.org/home/gene/DMXL2 ).

As Esposito et al comment, it is known to regulate the trafficking and activity of v-ATPase the latter having a role in acidifying intracellular organelles and promoting endosomal maturation (cited PMIDs : 25248098, 19758563, 22875945, 24802872).

In line with this, staining of patients' fibroblasts using the acidotropic dye LysoTracker demonstrated increased signal, reversed by re-expression of DMXL2 protein. Overall an acidic shift in pH with impairment of lysosomal structures and function was suggested. The authors provided additional evidence for altered lysosomal function and associated autophagy with accumulation of autophagy receptors (eg p62) and substrates (polyubiquitinated proteins). Vacuolization and accumulation of atypical fusion-like structures was shown upon ultrastractural analysis.

shRNA-mediated downregulation/silencing of Dmxl2 in mouse hippocampal neurons resulted also in altered lysosomal structures and defective autophagy. The neurons exhibited impaired neurite elongation and synapse formation.

The authors suggest similarities with Vici syndrome, where biallelic EPG5 mutations result in autophagic defects and clinical manifestations of DD/ID/epilepsy.

Dmxl2 homozygous ko mice display embryonic lethality with heterozygous mice displaying macrocephaly and corpus callosum dysplasia (cited PMIDs: 25248098, 30735494) .
Intellectual disability - microarray and sequencing v2.1098 FAM160B1 Konstantinos Varvagiannis gene: FAM160B1 was added
gene: FAM160B1 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: FAM160B1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FAM160B1 were set to 27431290; 31353455
Phenotypes for gene: FAM160B1 were set to Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of the face
Penetrance for gene: FAM160B1 were set to Complete
Review for gene: FAM160B1 was set to AMBER
Added comment: Anazi et al. (2017 - PMID: 27431290) in a study of 337 subjects with ID, reported on a consanguineous family (15DG2696) with 3 affected sibs. The proband, a 7 y.o. boy had hypotonia, DD, mild ID (IQ of 69), some facial dysmorphic features as well as increased skin elasticity and joint hypermobility. Initial investigations included metabolic testing for OA and CDGs, FMR1 and aCGH. A 4 y.o. sister and a 3 y.o. brother of the proband had similar presentation of DD. Exome sequencing, autozygosity mapping and segregation studies suggested a FAM160B1 hmz missense SNV as the likely causal variant (NM_001135051.1:c.248T>C or p.Leu83Pro). There were no other candidate variants. As the encoded protein has a yet unknown function, with uncertain in silico 3D modeling, the authors speculated disruption of helices affecting fold/(ligand binding) function as the underlying effect of this variant.

Mavioğlu et al. (2019 - PMID: 31353455) reported on a 38 y.o. female with history of motor and language delay, severe ID, ataxia, behavioral abrnormalities as well as some dysmorphic features. This individual was born to consanguineous parents (2nd cousins). There was history of a deceased, similarly affected sib. Initial investigations included metabolic work-up (plasma AA, urinary OA) and karyotyping. SNP genotyping in the family (parents, affected sib, 3 unaffected sibs) and multipoint linkage analysis for AR inheritance, yielded a maximum LOD score of 2.15. Selection of homozygous regions unique to the patient (but not present in unaffected sibs) did not suggest any known ID gene. Exome sequencing of the proband, with analysis of the variants in candidate regions revealed a homozygous stopgain SNV (NM_020940.4:c.115G>T or p.Glu39*) as the best candidate variant (with few others not considered to be relevant). FAM160B1 has a pLI of 1, LoF variants in public databases have MAFs below 0.000034 with no recorded homozygotes. In silico predictions suggested a deleterious effect (CADD score of 40, etc). The previous report by Anazi and fulfilment of the ACMG criteria for its classification of this variant as pathogenic led to its consideration as causal of the patient's phenotype.

Study of the expression of the 2 isoforms of the gene (isoform1: NM_020940, 2:NM_001135051) revealed that the first is ubiquitously expressed and the second only in testes. [To my understanding the 2 isoforms seem to differ only in their last exon, the 2 reported variants affecting both isoforms - http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr10%3A116577123%2D116663023&hgsid=777553295_dPP9DgaheaF82gTRTfZO6XS5lEzA ]

The function of this gene remains unknown. Animal models/phenotypes are probably not available.

There is no associated phenotype in OMIM/G2P. SysID lists FAM160B1 as a candidate ID gene.
FAM160B1 is not commonly included in gene panels for ID offered by diagnostic laboratories.

As a result this gene can be considered for inclusion in the current panel probably with amber (2 families/variants, variable ID as a feature) or red rating pending further evidence (given the partial phenotypic overlap, unknown function of the gene, variants not further studied, no animal models).
Sources: Literature
Intellectual disability - microarray and sequencing v2.1098 PDE6D Konstantinos Varvagiannis gene: PDE6D was added
gene: PDE6D was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: PDE6D was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PDE6D were set to 24166846; 30423442
Phenotypes for gene: PDE6D were set to ?Joubert syndrome 22 - MIM 615665
Penetrance for gene: PDE6D were set to Complete
Review for gene: PDE6D was set to AMBER
gene: PDE6D was marked as current diagnostic
Added comment: Thomas et al. (2014 - PMID: 24166846) reported on a consanguineous Pakistani family with 3 members presenting variable polydactyly, brain anomalies (incl. molar tooth sign), microphthalmia/coloboma with retinal disease, renal hypoplasia suggestive of Joubert syndrome.

Genotyping with a SNP array identified a unique 17-Mb region of homozygosity on chr2 with LOD score of 2.6. The region contained 208 genes, of which 15 present in ciliary gene databases. A homozygous splicing variant appeared to be the only relevant, PDE6D being a ciliary gene within this region [NM_002601.4:c.140-1G>A]. Status of all affected members, parents and 2 unaffected sibs was verified with Sanger sequencing.

PDE6D encodes a phosphodiesterase that binds to prenyl groups and has a critical role in ciliogenesis (Humbert et al. - PMID: 23150559 and OMIM).
Several lines of evidence provided support a role for PDE6D and the reported variants :
- Study of PDE6D expression during human embryogenesis suggests ubiquitous localization and highest levels in organs affected in ciliopathies (CNS, kidney tubules, respiratory tract epitherlial cells).
- RT-PCR of mRNA from control/patient fibroblasts and sequencing confirmed the splicing defect leading to an in-frame deletion of exon 3.
- Wt and mutant protein both localized in the basal body of primary cilia (patient/control fibroblasts). Cilia in both cases had normal morphology.
- Experiments in RPE cells confirmed that INPP5E (involved in Joubert/MORM syndrome) interacts (/is probably a cargo of) PDE6D, a process dependent on prenylation.
- Exon 3 deletion was confirmed to disrupt PDE6D binding to INPP5E.
- Analysis by immunofluoresence of INPP5E localization using control/patient fibroblasts and renal tissue showed absence of INPP5E from primary cilia in the case of patient cells (but not controls) suggesting that PDE6D is important for trafficking INPP5E to the cilium.
- Previous study in mice suggested altered photoreceptor physiology in Pde6d (-/-) animals, resulting in a slowly progressing rod/cone dystrophy. The effect was however limited to the eye. (PMID cited : 17496142 - Zhang et al., 2007).
- Morpholino knockdown of pde6d resulted in pericardial edema, eye abnormalities (microphthalmia and disorganized retinal cell layers) and kidney morphogenesis defects (distended, blocked pronephric openings and proximal tubule cysts). Edema was rescued upon coinjection of morpholino with wt (but not mutant) mRNA. Similarly coinjection led to complete or partial rescue of eye development in the case of wt and mutant mRNA respectively supporting pathogenicity and (partial) loss-of-function effect for the variant.
---------
Mégarbané et al. (2019 - PMID: 30423442) reported on an affected 6 month-old boy born to Lebanese first-cousin parents. Features included hypotonia, developmental delay, microcephaly, oculomotor apraxia, postaxial polydactyly of hands and feet and presence of a molar tooth sign upon brain MRI. Renal and retinal anomalies were absent (also given his age). Exome sequencing revealed homozygosity for a frameshift PDE6D variant [NM_002601.3:c.367_368insG or p.(Leu123Cysfs*13)]. Sanger sequencing confirmed presence of the variant in the proband and carrier status of the parents. The variant affected the penultimate exon (note : present in only this longest transcript) and was not predicted to trigger NMD but rather lead to elimination of a highly conserved PDZ-interaction domain.
---------
The phenotype associated with biallelic PDE6D variants in OMIM is ?Joubert syndrome 22 - MIM 615665 based only on the 1st report ('delayed psychomotor development' among the features). There is no relevant entry in G2P. PDE6D is listed as a Current primary (/confirmed) ID gene in SysID (the aforementioned PMIDs cited).

This gene is included in gene panels for ID offered by some diagnostic laboratories (eg. GeneDx).
---------
Overall PDE6D could be considered for inclusion in the ID panel probably with amber rating (2 families/variants, DD but outcome otherwise unknown - evidence for the the gene causing JS seems however sufficient).
Sources: Literature
Intellectual disability - microarray and sequencing v2.1098 NTNG2 Konstantinos Varvagiannis gene: NTNG2 was added
gene: NTNG2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: NTNG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NTNG2 were set to 31372774; 31668703
Phenotypes for gene: NTNG2 were set to Central hypotonia; Global developmental delay; Intellectual disability; Behavioral abnormality; Microcephaly; Seizures
Penetrance for gene: NTNG2 were set to Complete
Review for gene: NTNG2 was set to GREEN
Added comment: [1] Abu-Libdeh et al. (2019 - PMID: 31372774) reported 8 individuals from 4 unrelated consanguineous families of Arab Muslim origin, all homozygous for NM_032536.3:c.376dup - p.(Ser126PhefsTer241). Common features included hypotonia, failure to achieve milestones and developmental stagnation without regression during the first year (~9m) of life and severe ID. Minimal purposeful hand use (grasping and bringing objects to mouth), hand stereotypies and bruxism were also observed. Microcephaly and impaired growth were almost universal (with the exception of 2 having an OFC at ~10% percentile). Relevant previous investigations were normal in all and included MECP2, SMN1, aCGH, metabolic testing, etc. The variant was identified by exome in all, and Sanger confirmed with compatible segregation studies in parents and sibs. The variant was found within a shared haplotype of ~4.35 Mb, probably due to a founder effect.

[2] Dias et al. (2019 - PMID: 31668703) described 16 individuals from 7 unrelated families from Iran, Mexico, Turkey, Egypt and Bangladesh. Parents were known to be consanguineous or shown to be distantly related. All patients were homozygous for missense variants private to each family (7 variants) identified following exome sequencing. Shared features incl. hypotonia, GDD, severe to profound ID and behavioral anomalies incl. autistic features/stereotypies (most), screaming/laughing spells (most), bruxism. Microcephaly (5/14), growth below average/FTT and GI problems were also observed.

Epilepsy was reported in 5 individuals belonging to 4 different families in these 2 studies (5/24 overall / 4 variants).

Netrin-G2, the encoded protein, is bound to the plasma membrane by GPI-anchors. Netrins-G2 and G1 (another member of the Netrin-G subfamily) are enriched in presynaptic terminals. Interaction with their cognate Netrin-G ligand trans-synaptic partners / receptors (NGL2, NGL1 respectively) has been shown to promote axon outgrowth, induce and maintain excitatory synapse formation. Complementary and non-overlapping expression in the developping and mature CNS has been shown for Netrin-G2/1 in mice (several references provided by Abu-Libdeh / Dias).

Variant effect : The frameshift variant was not studied by Abu-Libdeh et al. Variants in the 2nd ref. were all missense, displayed no-specific localization and were suggested to affect protein stability and/or expression at the cell surface as 4/7 involved loss or addition of cystein residues (possibly creating unpaired cysteins) and 2 of the remaining 3 were predicted to affect the hydrophobic core. In line with this, overexpression of wt/variant constructs in HeLa cells demonstrated substantially decreased cell surface expression for all variants.

Mouse models/phenotypes : Dias et al. showed that siRNA-mediated Ntng2 knockdown in N2a cells led to significant reduction in neurite number and length. Studied previously, Ntng2 knockout mice display impaired learning, memory, visual and motor functioning (PMID cited : 26746425).

NTNG2 is not associated with any phenotype in OMIM/G2P. SysID lists it among the candidate ID genes, citing PMID: 29302074 (not here reviewed & NTNG2 not in the main text).

Overall this gene can be considered for inclusion in the ID panel probably as green (>3 individuals/families/variants, consistent phenotype in both reports, role of the gene, in silico and in vitro studies, animal model, etc) or amber.

[Please consider inclusion in other panels if relevant eg. ASD panel (many individuals having autistic / Rett-like features or epilepsy) or epilepsy (>3 individuals/families/variants although most families were also consanguineous)]
Sources: Literature
Intellectual disability - microarray and sequencing v2.1062 APC2 Konstantinos Varvagiannis gene: APC2 was added
gene: APC2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: APC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: APC2 were set to 31585108; 25753423; 19759310; 22573669
Phenotypes for gene: APC2 were set to Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system
Penetrance for gene: APC2 were set to Complete
Review for gene: APC2 was set to GREEN
gene: APC2 was marked as current diagnostic
Added comment: Probably 14 individuals from 9 families (8 consanguineous) with biallelic APC2 LoF variants have been reported.

ID and brain abnormalities were features in all, although the presentation was quite different between sibs in the first report (PMID: 25753423 - mild/mod ID, ventriculomegaly and CC anomalies, macrocephaly with variable height, Sotos-like facial features) and 12 subsequently described patients (PMID: 31585108 - severe ID, P>A lissencephaly/CC anomalies/ventriculomegaly/paucity of white matter in (almost) all, gT-C/myoclonic seizures in 8/12 with onset 3m-6y, OFC in the low percentiles).

In all cases relevant alternative diagnoses (eg. macrocephaly/overgrowth syndromes - 1st report, mutations in other lissencephaly genes, metabolic disorders - 2nd) were ruled out.

APC2 encodes Adenomatous polyposis coli protein 2, expressed in the CNS.

All variants reported to date were LoF (stopgain/frameshift/splicing) and were supported by parental-only studies. Mutations in the 1st report as well as 4/8 variants from the 2nd report localized within the last exon (NM_005883.2 / longest of >=3 isoforms), although the 2nd report did not observe obvious genotype-phenotype correlations.

Despite a pLI of 1 in gnomAD, Lee et al. comment that heterozygous carriers did not have any noticeable phenotype. They further note that carriers were not examined by brain MRI, though. 27 heterozygous high-confidence variants appear in individuals in gnomAD. Finally as commented on, APC2 is not mutated in colon cancer.

Animal models: Apc -/- mice displayed disrupted neuronal migration, with defects of lamination of cerebral cortex and cerebellum supporting the observed brain abnormalities. In addition Apc2-deficient mice also presented impaired learning and memory abilities. Extensive additional studies have shown Apc2 co-localization with microtubules affecting their stabilization, distribution along actin fibers (all supporting a role in cytoskeletal organization) and regulation of Rac1 (a Rho GTPase). Generation of Neuro2a cells demonstrated abnormal localization mainly in cell bodies of mutant hAPC2 proteins (due to frameshift in the last exon / deletion of the C-terminal part) - different from wt (neurites, growth cones, cell bodies). The first patient report also provided evidence for Apc2 being a downstream effector of Nsd1, with Nsd1 knockdown brains displaying impaired migration / laminar positioning of cortical neurons (similar to Apc2-/- model) and rescued by forced expression of Apc2.

Relevant articles:
PMIDs: 19759310 and 22573669 (Shintani et al. 2009 & 2012) [mouse model]
PMID: 25753423 (Almuriekhi et al. 2015) [2 individuals + mouse model]
PMID: 31585108 (Lee et al. 2019) [12 individuals from 8 families]
-----
In OMIM, the APC2-related phenotype is ?Sotos syndrome 3 (MIM 617169 - AR). G2P does not have any associated phenotype for this gene. In SysID, APC2 belongs to the Current primary ID genes.
APC2 is included in gene panels for ID offered by some diagnostic laboratories (eg. Radboudumc, GeneDx).
-----
Overall, this gene could be considered for inclusion in the ID panel probably as green (>3 individuals/families/variants, highly specific pattern of lissencephaly in 12/14, mouse model supporting migration defects and impaired learning/memory) rather than amber (differences between the 1st and the other families reported as for the OFC and presence of lissencephaly).
Sources: Literature
Intellectual disability - microarray and sequencing v2.1062 CDH2 Konstantinos Varvagiannis changed review comment from: Accogli et al. (2019 - PMID: 31585109) report on 9 individuals with de novo pathogenic CDH2 variants.

Overlapping features included axon pathfinding defects (corpus callosum agenesis/hypoplasia, mirror movements, Duane anomaly), cardiac, ocular and genital anomalies. Neurodevelopmental phenotypes included DD (8/9), ID (2/8 mild and 2/8 moderate, the remaining had either low-average/borderline int. functioning (2), did not present ID (2) or did not have relevant age for evaluation) and ASD (in 2).

CDH2 encodes cadherin-2 (N-cadherin) with high expression in neural tissue. As the authors note, the gene has important role in neural development, incl. proliferation and differentiation of neural progenitor cells, neural tube formation, synaptogenesis, neuronal migration and axon elongation. N-cadherin, similar to other classical cadherins has an extracellular domain with 5 extracellular cadherin (EC) domain repeats that mediate cell adhesion either in cis or in trans (between molecules of the same / different cells).

Mutations in other cadherins have been associated among others with neurodevelopmental disorders (eg. PCDH19, PCDH12, etc).

Variants in all cases were de novo, identified following trio-WES. 7 missense variants (6 of which clustering within the EC4-EC5 linker region or the EC5 domain - calculated p=1.37x10-4) and 2 frameshift ones predicted not to lead to NMD were identified.

One individual had an additional DNM1 variant, formally fulfilling ACMG criteria for pathogenic. The authors however felt that presentation of the specific subject (low-average/borderline int. functioning, absence of seizures and microcephaly) was not compatible with the phenotype of DNM1-encephalopathy .

Missense SNVs within the EC4-EC5 region, were shown to impair cell-cell adhesion by affecting both self-binding and trans adhesion to wt N-cadherin (in L cells studied). This supported a possible dominant-negative effect. A single variant in the EC2 domain - previously shown to be critical for adhesion - was thought to have a similar effect. The authors speculated that truncating variants may also act in a dominant-negative manner (as has been demonstrated for other cadherins) although LoF remains possible.

Cdh2 knockout in mice is embryonically lethal. Mouse with conditional inactivation of Cdh2 in the cerebral cortex leads to cortical disorganization and CCA similar to the human phenotypes (PMIDs cited: 9015265, 17222817). Other animal studies (mouse, zebrafish, chicken, dog, etc) are also cited to link with specific defects.

Heterozygous CDH2 variants affecting the ectodomain have been associated with ARVC (2 variants, one of which segregated with the disorder in a 3-generation family, the other identified in two unrelated families with several affecteds - refs. provided in the article). Cardiac abnormalities were noted in several subjects (incl. electrical activity in 2). [Amber rating of this gene in Arrhythmogenic cardiomyopathy panel].
------
The gene is not associated with any phenotype in OMIM / G2P / SysID and not commonly included in panels for ID.
------
As a result CDH2 could be considered for inclusion in the ID panel probably as amber (mild/moderate ID in 4/8, uncertainty regarding the underlying effect of some variants or additional phenotypes (ARVC)) or green (>3 individuals/variants/families, ID is a feature and in some cases of moderate degree).
Sources: Literature; to: Accogli et al. (2019 - PMID: 31585109) report on 9 individuals with de novo pathogenic CDH2 variants.

Overlapping features included axon pathfinding defects (corpus callosum agenesis/hypoplasia, mirror movements, Duane anomaly), cardiac, ocular and genital anomalies. Neurodevelopmental phenotypes included DD (8/9), ID (2/8 mild and 2/8 moderate, the remaining had either low-average/borderline int. functioning (2), did not present ID (2) or did not have relevant age for evaluation) and ASD (in 2).

CDH2 encodes cadherin-2 (N-cadherin) with high expression in neural tissue. As the authors note, the gene has important role in neural development, incl. proliferation and differentiation of neural progenitor cells, neural tube formation, synaptogenesis, neuronal migration and axon elongation. N-cadherin, similar to other classical cadherins has an extracellular domain with 5 extracellular cadherin (EC) domain repeats that mediate cell adhesion either in cis or in trans (between molecules of the same / different cells).

Mutations in other cadherins have been associated among others with neurodevelopmental disorders (eg. PCDH19, PCDH12, etc).

Variants in all cases were de novo, identified following trio-WES. 7 missense variants (6 of which clustering within the EC4-EC5 linker region or the EC5 domain - calculated p=1.37x10-4) and 2 frameshift ones predicted not to lead to NMD were identified.

One individual had an additional DNM1 variant, formally fulfilling ACMG criteria for pathogenic. The authors however felt that presentation of the specific subject (low-average/borderline int. functioning, absence of seizures and microcephaly) was not compatible with the phenotype of DNM1-encephalopathy .

Missense SNVs within the EC4-EC5 region, were shown to impair cell-cell adhesion by affecting both self-binding and trans adhesion to wt N-cadherin (in L cells studied). This supported a possible dominant-negative effect. A single variant in the EC2 domain - previously shown to be critical for adhesion - was thought to have a similar effect. The authors speculated that truncating variants may also act in a dominant-negative manner (as has been demonstrated for other cadherins) although LoF remains possible.

Cdh2 knockout in mice is embryonically lethal. Conditional inactivation of Cdh2 in the cerebral cortex leads to cortical disorganization and CCA similar to the human phenotypes (PMIDs cited: 9015265, 17222817). Other animal studies (mouse, zebrafish, chicken, dog, etc) are also cited to link with specific defects.

Heterozygous CDH2 variants affecting the ectodomain have been associated with ARVC (2 variants, one of which segregated with the disorder in a 3-generation family, the other identified in two unrelated families with several affecteds - refs. provided in the article). Cardiac abnormalities were noted in several subjects (incl. electrical activity in 2). [Amber rating of this gene in Arrhythmogenic cardiomyopathy panel].
------
The gene is not associated with any phenotype in OMIM / G2P / SysID and not commonly included in panels for ID.
------
As a result CDH2 could be considered for inclusion in the ID panel probably as amber (mild/moderate ID in 4/8, uncertainty regarding the underlying effect of some variants or additional phenotypes (ARVC)) or green (>3 individuals/variants/families, ID is a feature and in some cases of moderate degree).
Sources: Literature
Intellectual disability - microarray and sequencing v2.1062 CDH2 Konstantinos Varvagiannis gene: CDH2 was added
gene: CDH2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: CDH2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CDH2 were set to 31585109; 9015265; 17222817
Phenotypes for gene: CDH2 were set to Abnormality of the corpus callosum; Abnormality of neuronal migration; Bimanual synkinesia; Duane anomaly; Abnormality of cardiovascular system; Abnormality of the eye; Abnormality of the genital system; Global developmental delay; Intellectual disability
Penetrance for gene: CDH2 were set to unknown
Review for gene: CDH2 was set to AMBER
Added comment: Accogli et al. (2019 - PMID: 31585109) report on 9 individuals with de novo pathogenic CDH2 variants.

Overlapping features included axon pathfinding defects (corpus callosum agenesis/hypoplasia, mirror movements, Duane anomaly), cardiac, ocular and genital anomalies. Neurodevelopmental phenotypes included DD (8/9), ID (2/8 mild and 2/8 moderate, the remaining had either low-average/borderline int. functioning (2), did not present ID (2) or did not have relevant age for evaluation) and ASD (in 2).

CDH2 encodes cadherin-2 (N-cadherin) with high expression in neural tissue. As the authors note, the gene has important role in neural development, incl. proliferation and differentiation of neural progenitor cells, neural tube formation, synaptogenesis, neuronal migration and axon elongation. N-cadherin, similar to other classical cadherins has an extracellular domain with 5 extracellular cadherin (EC) domain repeats that mediate cell adhesion either in cis or in trans (between molecules of the same / different cells).

Mutations in other cadherins have been associated among others with neurodevelopmental disorders (eg. PCDH19, PCDH12, etc).

Variants in all cases were de novo, identified following trio-WES. 7 missense variants (6 of which clustering within the EC4-EC5 linker region or the EC5 domain - calculated p=1.37x10-4) and 2 frameshift ones predicted not to lead to NMD were identified.

One individual had an additional DNM1 variant, formally fulfilling ACMG criteria for pathogenic. The authors however felt that presentation of the specific subject (low-average/borderline int. functioning, absence of seizures and microcephaly) was not compatible with the phenotype of DNM1-encephalopathy .

Missense SNVs within the EC4-EC5 region, were shown to impair cell-cell adhesion by affecting both self-binding and trans adhesion to wt N-cadherin (in L cells studied). This supported a possible dominant-negative effect. A single variant in the EC2 domain - previously shown to be critical for adhesion - was thought to have a similar effect. The authors speculated that truncating variants may also act in a dominant-negative manner (as has been demonstrated for other cadherins) although LoF remains possible.

Cdh2 knockout in mice is embryonically lethal. Mouse with conditional inactivation of Cdh2 in the cerebral cortex leads to cortical disorganization and CCA similar to the human phenotypes (PMIDs cited: 9015265, 17222817). Other animal studies (mouse, zebrafish, chicken, dog, etc) are also cited to link with specific defects.

Heterozygous CDH2 variants affecting the ectodomain have been associated with ARVC (2 variants, one of which segregated with the disorder in a 3-generation family, the other identified in two unrelated families with several affecteds - refs. provided in the article). Cardiac abnormalities were noted in several subjects (incl. electrical activity in 2). [Amber rating of this gene in Arrhythmogenic cardiomyopathy panel].
------
The gene is not associated with any phenotype in OMIM / G2P / SysID and not commonly included in panels for ID.
------
As a result CDH2 could be considered for inclusion in the ID panel probably as amber (mild/moderate ID in 4/8, uncertainty regarding the underlying effect of some variants or additional phenotypes (ARVC)) or green (>3 individuals/variants/families, ID is a feature and in some cases of moderate degree).
Sources: Literature
Intellectual disability - microarray and sequencing v2.1046 PMPCB Konstantinos Varvagiannis changed review comment from: Biallelic pathogenic PMPCB variants cause, Multiple mitochondrial dysfunctions syndrome 6 (MIM 617954).

5 relevant individuals from 4 unrelated families (in one case consanguineous) have been reported by Vögtle et al. (2018 - PMID: 29576218).

Onset of symptoms (eg. hypotonia) often preceded a period of developmental regression/stagnation which was common in all individuals and occurred within the first 2 years of life, usually following febrile illness. In all cases neurological features were severe (lack of ambulation/speech). Seizures were observed in 4 individuals from 3 families, with onset at the age of 11-24m. MRI images demonstrated T2 signal hyperintensities of the basal ganglia with cerebellar and cerebral atrophy in some. Deterioration with early death was reported on three occasions, though some years after symptom onset.

Following exclusion of other diagnoses in some cases (eg. aCGH, epilepsy panel), WES identified biallelic PMPCB missense variants, supported by Sanger confirmation and segregation studies. The following variants were reported (NM_004279.2):
- c.523C>T (p.Arg175Cys) in trans with c.601G>C (p.Ala201Pro) [Fam A and B]
- c.524G>A (p.Arg175His) in trans with c.530T>G (p.Val177Gly) [Fam C]
- c.1265T>C (p.Ile422Thr) in homozygous state [Fam D with 2 affected sibs]

The gene encodes the catalytic (beta) subunit of the mitochondrial processing protease (MPP) which is responsible for the cleavage/maturation of nuclear-encoded mitochondrial precursor proteins after their import in mitochondria. The alpha subunit is encoded by PMPCA (green rating proposed for this panel).

Extensive studies demonstrated (perhaps a better summary provided by OMIM):
- Reduced PMPCB protein levels in mitochondria isolated from patient fibroblasts or patient-derived pluripotent stem cells.
- Frataxin maturation was impaired with accumulation of the intermediate form and lower amounts of mature FXN, indicating decrease in MPP activity.
- Analysis of the homologous Mas1 S. cerevisiae mutants was carried out, with the exception of Ile422Thr (corresponding to Mas1 - Ile398Thr), the introduction of which did not yield viable yiest strains. Homologous mutations led to a temperature-sensitive phenotype with accumulation of immature/unprocessed precursor proteins and decrease of mature/processed forms both in vivo or in organello (following isolation of mitochondria). Under conditions of heat stress, Mas1 mutations decreased biogenesis of Fe-S clusters.
- Respiratory chain complexes I-III contain Fe-S clusters. In muscle biopsy from an affected individual, complex II activity was significantly reduced (although this was not the case in fibroblasts or liver biopsy). Dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes (eg. aconitase) was also shown in muscle tissue.

Regression/stagnation with seizures/non-achievement of milestones may justify testing for an ID / epilepsy gene panel. In addition, metabolic studies or mitochondrial respiratory chain complex studies were sometimes non-informative (lactate elevated in 3/5 subjects) or not carried out at all / in relevant tissues (muscle biopsy in 2 individuals, fibroblasts/liver biopsy did not demonstrate reduced complex activity when tested).

PMPCB is included in the ID gene panel of Radboudumc, as well as the SysID database. The gene is included in the DD panel of G2P associated with "Neurodegeneration in Early Childhood" (disease confidence : probable).

As a result, PMPCB can be considered for inclusion in both epilepsy and ID panels as green (or amber).
Sources: Literature, Radboud University Medical Center, Nijmegen; to: Biallelic pathogenic PMPCB variants cause, Multiple mitochondrial dysfunctions syndrome 6 (MIM 617954).

5 relevant individuals from 4 unrelated families (in one case consanguineous) have been reported by Vögtle et al. (2018 - PMID: 29576218).

Onset of symptoms (eg. hypotonia) often preceded a period of developmental regression/stagnation which was common in all individuals and occurred within the first 2 years of life, usually following febrile illness. In all cases neurological features were severe (lack of ambulation/speech). Seizures were observed in 4 individuals from 3 families, with onset at the age of 11-24m. MRI images demonstrated T2 signal hyperintensities of the basal ganglia with cerebellar and cerebral atrophy in some. Deterioration with early death was reported on three occasions, though some years after symptom onset.

Following exclusion of other diagnoses in some cases (eg. aCGH, epilepsy panel), WES identified biallelic PMPCB missense variants, supported by Sanger confirmation and segregation studies. The following variants were reported (NM_004279.2):
- c.523C>T (p.Arg175Cys) in trans with c.601G>C (p.Ala201Pro) [Fam A and B]
- c.524G>A (p.Arg175His) in trans with c.530T>G (p.Val177Gly) [Fam C]
- c.1265T>C (p.Ile422Thr) in homozygous state [Fam D with 2 affected sibs]

The gene encodes the catalytic (beta) subunit of the mitochondrial processing protease (MPP) which is responsible for the cleavage/maturation of nuclear-encoded mitochondrial precursor proteins after their import in mitochondria. The alpha subunit is encoded by PMPCA (green rating proposed for this panel).

Extensive studies demonstrated (perhaps a better summary provided by OMIM):
- Reduced PMPCB protein levels in mitochondria isolated from patient fibroblasts or patient-derived pluripotent stem cells.
- Frataxin maturation was impaired with accumulation of the intermediate form and lower amounts of mature FXN, indicating decrease in MPP activity.
- Analysis of the homologous Mas1 S. cerevisiae mutants was carried out, with the exception of Ile422Thr (corresponding to Mas1 - Ile398Thr), the introduction of which did not yield viable yeast strains. Homologous mutations led to a temperature-sensitive phenotype with accumulation of immature/unprocessed precursor proteins and decrease of mature/processed forms both in vivo or in organello (following isolation of mitochondria). Under conditions of heat stress, Mas1 mutations decreased biogenesis of Fe-S clusters.
- Respiratory chain complexes I-III contain Fe-S clusters. In muscle biopsy from an affected individual, complex II activity was significantly reduced (although this was not the case in fibroblasts or liver biopsy). Dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes (eg. aconitase) was also shown in muscle tissue.

Regression/stagnation with seizures/non-achievement of milestones may justify testing for an ID / epilepsy gene panel. In addition, metabolic studies or mitochondrial respiratory chain complex studies were sometimes non-informative (lactate elevated in 3/5 subjects) or not carried out at all / in relevant tissues (muscle biopsy in 2 individuals, fibroblasts/liver biopsy did not demonstrate reduced complex activity when tested).

PMPCB is included in the ID gene panel of Radboudumc, as well as the SysID database. The gene is included in the DD panel of G2P associated with "Neurodegeneration in Early Childhood" (disease confidence : probable).

As a result, PMPCB can be considered for inclusion in both epilepsy and ID panels as green (or amber).
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v2.1046 PMPCB Konstantinos Varvagiannis gene: PMPCB was added
gene: PMPCB was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: PMPCB was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: PMPCB were set to Multiple mitochondrial dysfunctions syndrome 6, 617954
Penetrance for gene: PMPCB were set to Complete
Review for gene: PMPCB was set to GREEN
gene: PMPCB was marked as current diagnostic
Added comment: Biallelic pathogenic PMPCB variants cause, Multiple mitochondrial dysfunctions syndrome 6 (MIM 617954).

5 relevant individuals from 4 unrelated families (in one case consanguineous) have been reported by Vögtle et al. (2018 - PMID: 29576218).

Onset of symptoms (eg. hypotonia) often preceded a period of developmental regression/stagnation which was common in all individuals and occurred within the first 2 years of life, usually following febrile illness. In all cases neurological features were severe (lack of ambulation/speech). Seizures were observed in 4 individuals from 3 families, with onset at the age of 11-24m. MRI images demonstrated T2 signal hyperintensities of the basal ganglia with cerebellar and cerebral atrophy in some. Deterioration with early death was reported on three occasions, though some years after symptom onset.

Following exclusion of other diagnoses in some cases (eg. aCGH, epilepsy panel), WES identified biallelic PMPCB missense variants, supported by Sanger confirmation and segregation studies. The following variants were reported (NM_004279.2):
- c.523C>T (p.Arg175Cys) in trans with c.601G>C (p.Ala201Pro) [Fam A and B]
- c.524G>A (p.Arg175His) in trans with c.530T>G (p.Val177Gly) [Fam C]
- c.1265T>C (p.Ile422Thr) in homozygous state [Fam D with 2 affected sibs]

The gene encodes the catalytic (beta) subunit of the mitochondrial processing protease (MPP) which is responsible for the cleavage/maturation of nuclear-encoded mitochondrial precursor proteins after their import in mitochondria. The alpha subunit is encoded by PMPCA (green rating proposed for this panel).

Extensive studies demonstrated (perhaps a better summary provided by OMIM):
- Reduced PMPCB protein levels in mitochondria isolated from patient fibroblasts or patient-derived pluripotent stem cells.
- Frataxin maturation was impaired with accumulation of the intermediate form and lower amounts of mature FXN, indicating decrease in MPP activity.
- Analysis of the homologous Mas1 S. cerevisiae mutants was carried out, with the exception of Ile422Thr (corresponding to Mas1 - Ile398Thr), the introduction of which did not yield viable yiest strains. Homologous mutations led to a temperature-sensitive phenotype with accumulation of immature/unprocessed precursor proteins and decrease of mature/processed forms both in vivo or in organello (following isolation of mitochondria). Under conditions of heat stress, Mas1 mutations decreased biogenesis of Fe-S clusters.
- Respiratory chain complexes I-III contain Fe-S clusters. In muscle biopsy from an affected individual, complex II activity was significantly reduced (although this was not the case in fibroblasts or liver biopsy). Dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes (eg. aconitase) was also shown in muscle tissue.

Regression/stagnation with seizures/non-achievement of milestones may justify testing for an ID / epilepsy gene panel. In addition, metabolic studies or mitochondrial respiratory chain complex studies were sometimes non-informative (lactate elevated in 3/5 subjects) or not carried out at all / in relevant tissues (muscle biopsy in 2 individuals, fibroblasts/liver biopsy did not demonstrate reduced complex activity when tested).

PMPCB is included in the ID gene panel of Radboudumc, as well as the SysID database. The gene is included in the DD panel of G2P associated with "Neurodegeneration in Early Childhood" (disease confidence : probable).

As a result, PMPCB can be considered for inclusion in both epilepsy and ID panels as green (or amber).
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v2.1015 DDX6 Konstantinos Varvagiannis gene: DDX6 was added
gene: DDX6 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DDX6 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DDX6 were set to 31422817
Phenotypes for gene: DDX6 were set to Generalized hypotonia; Global developmental delay; Intellectual disability; Unsteady gait; Abnormality of the cardiovascular system; Abnormality of the genitourinary system; Abnormality of limbs
Penetrance for gene: DDX6 were set to unknown
Review for gene: DDX6 was set to GREEN
Added comment: Balak et al. (2019 - PMID: 31422817) report on 5 individuals with de novo likely pathogenic DDX6 variants.

Clinical details are provided for 4. Frequent features included hypotonia, DD, ID (4/4), gait instability, cardiac, genitourinary as well anomalies of the extremities.

DDX6 belongs to the DEAD box family of RNA helicases. This helicase is an essential component of processing bodies (P-bodies / PBs), which are mebrane-less organelles involved in storage of mRNAs and proteins related to mRNA decay thus playing an important role in translational repression/post-transcriptional regulation (PMID: 29381060).

All 5 variants had occurred as de novo events, clustered in exon 11 (NM_004397.5) and affected residues 372-373 of the QxxR motif (c.1115A>G or p.His372Arg / c.1118G>A or p.Arg373Gln) or 390-391 of the V motif (c.1168T>C or p.Cys390Arg / c.1171A>C or p.Thr391Pro / c.1172C>T or p.Thr391Ile). The specific motifs (and RecA-2 domain) are involved in RNA binding, helicase activity and protein-partner binding.

Fibroblasts from 2 individuals were studied. Patient cells contained fewer PBs compared to cells from relatives/control-subjects, despite similar amounts of DDX6 protein upon immunobloting. Additional studies suggested that DDX6 variants caused impaired binding of other DDX6 protein partners involved in PB formation / translation repression (eg. LSM14A, 4E-T, etc) thus resulting in defective PB assembly.

Transcriptome analysis in fibroblasts from one affected individual revealed (significant) differential expression of >1000 genes, enriched for genes related to protein translation, ribosome and RNA processing.

As the authors discuss, given the residual PB assembly, haploinsufficiency is favored over a dominant-negative effect which would result in complete suppression of PBs (as sugested by a previous study of a dominant-negative DDX6 variant - PMID cited: 19297524). [In gnomAD, DDX6 has a Z-score for missense variants of 3.78 and a pLI of 1].

DDX6 is not associated with any phenotype in OMIM.
In G2P it is associated with ID (disease confidence : probable / mutations : all missense/in frame).

As a result, this gene can be considered for inclusion in the ID panel as green (sufficient cases, relevant phenotype, functional studies) or amber.
Sources: Literature
Intellectual disability - microarray and sequencing v2.845 ACTL6B Rebecca Foulger commented on gene: ACTL6B: Karaca et al, 2015 (PMID:26539891) report a homozygous variant (NM_016188: c.G893A; p.R298Q) in two siblings BAB6569 and BAB6570 with severe ID, microcephaly, seizures and some autistic behavioral pattern (BAB6570 appears in the text but not table 1).

Sajan et al., 2017 (PMID:27171548) report a homozygous stoploss variant in ACTL6B: c.1279delT (p.X427D) in an ASD case from the DDD study (PMID:25533962) but no other clinical or EEG data was provided.

Maddirevula et al 2019 (PMID:30237576) searched their database on exomes in search of homozygous variants that could be linked to diseases. They identified the homozygous variant NM_016188.4:c.999T>A:p.(Cys333*) in a 13 year old girl (individual 17-1447) with phenotype global developmental delay, vs hyperekplexia, and basal ganglia abnormalities.
Intellectual disability - microarray and sequencing v2.742 WARS2 Konstantinos Varvagiannis gene: WARS2 was added
gene: WARS2 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: WARS2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WARS2 were set to 28236339; 28650581; 28905505; 29783990; 29120065
Phenotypes for gene: WARS2 were set to Neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures, 617710
Penetrance for gene: WARS2 were set to unknown
Review for gene: WARS2 was set to GREEN
gene: WARS2 was marked as current diagnostic
Added comment: Several individuals with biallelic pathogenic WARS2 variants have been published to date. DD and ID have been reported among others in most of the affected individuals (only the respective features are commented on below):

PMID: 28236339 (Musante et al. 2017) : 2 sibs compound heterozygous for NM_201263.2:c.325delA (p.Ser109Alafs*159) and c.37T>G (p.Trp13Gly). DD with ID were features in both.

PMID: 28650581 (Theisen et al. 2017) : The authors report on 1 individual with DD, ID and seizures was found to harbor in the compound heterozygous state NM_0158360.3:c.938A>T (p.K313M) and c.298_300delCTT (p.L100del).

PMID: 28905505 (Wortmann et al. 2017) : Details on 6 individuals from 5 unrelated families are provided. DD and ID were observed in 5 of these individuals (Fam 2-5). Severe, neonatal presentation was the case for an additional subject. Confirmed occurrence of epilepsy was reported for 3 individuals from 2 families (and suspected in a further one). Using NM_0158360.3 variants were the following :
Fam1 : c.91-8725_348+27113del36096 (p.Lys31_Glndel116) in trans with c.1045G>C (p.Val349Leu)
Fam2 : c.797del (p.Pro266Argfs*10) in trans with c.938A>T (p.Lys313met) [in 2 individuals]
Fam3 : c.231C>G (p.His77Gln) in trans with c.1054G>A (p.Glu352Lys)
Fam4 : c.532G>C (p.Val178Leu) in homozygous state
Fam5 : c.134G>T (p.Gly45Val) in trans with c.938A>T (p.Lys313Met)

PMID: 29783990 (Vantroys et al. 2018) : The authors report on 1 individual with DD, ID and seizures (among other features), compound heterozygous for c.797del (p.Pro266Argfs*10) and c.938A>T (p.Lys313met), similar to subjects from family 2 in PMID: 28905505.

PMID: 29120065 (Burke et al. 2018) : One 17-year-old boy with infantile-onset Parkinsonism but not DD/ID is described in this study. This individuals was found to harbor in the following variants in the compound heterozygous state: NM_015836.3: c.37T>G (p.Trp13Gly) and c.683C>G (p.Ser228Trp).

Probably 7 missense variants, 3 frameshift ones and an intragenic deletion have been reported in individuals with DD/ID (overview in fig 4. - in PMID: 29783990).
- p.Pro266Argfs*10 is located in the last exon of the gene (NM_015836.3).
- p.Trp13Gly (c.37T>G using either NM_201263.2 or NM_015836.3 as ref) has been commented to be a functional polymorphism 'uncovered' by the presence of a LoF allele in trans in affected individuals (AF : 0.003265 and 6 homozygotes in gnomAD)
- p.Lys313Met is possibly the most frequently reported variant as discussed by Vantroys et al.

WARS2 encodes mitochondrial tryptophanyl-tRNA synthetase (a cytoplasmic form is encoded by WARS). As commented in most of the articles, aminoacyl-tRNA synthetases (ARS) are a group of enzymes responsible for ligating amino acids to cognate tRNA molecules. Mutations in mitochondrial ARSs lead to impaired intramitochondrial translation affecting OXPHOS complexes (with mitochondrial-encoded subunits). Mutations in all 19 mitochondrial ARSs have been linked to disorders affecting different organ systems with variable severity and phenotypic presentation (summarized by Vantroys et al.).

Several lines of evidence have been provided to support a role for specific variants (eg. reduced WARS2 amounts upon Western blot, or impaired mitochondrial localization depending on the different variants and their effect) or WARS2 (expression in brain, impaired aminoacylation, abnormalities in OXPHOS enzymes/biosynthesis , etc).

Alternative causes (disorders of the differential diagnosis) have been ruled out on most - if not all - occasions.

As commented by Wortmann et al. the clinical spectrum appears to be broad as for the age of onset, features and clinical course (as happens to be the case for some other disorders due deficiencies of other ARSs). The same authors state that apart from elevated lactate which is suggestive of mitochondrial dysfunction, no specific metabolite was found to be altered in affected individuals.

Phenotypic variability even between individuals with the same genotype has been reported. Eg. severe neonatal presentation with lactic acidosis/hypoglycaemia was the case for 2 sibs in family 2 from Wortmann et al. but the clinical course was different for the subject reported by Vantroys et al. (DD/ID with seizure onset at the age of 6 yrs).

As a result, investigations (and selection of gene panel) may not be straightforward.

In addition consideration of this gene in the epilepsy panel seems to be relevant given that seizures were noted in at least 5 individuals (from 4 families - 28650581, 28905505, 29783990) and severe adverse effects of valproate administration occurred in the subject reported by Vantroys et al.
-----------
The associated phenotype in OMIM is Neurodevelopmental disorder, mitochondrial, with abnormal movements and lactic acidosis, with or without seizures (# 617710). WARS2 is not associated with any disorder in G2P.
This gene is included in panels for ID offered by some diagnostic laboratories.
-----------
As a result, WARS2 can be considered for inclusion in the ID and epilepsy panels as green (or amber).
Sources: Literature
Intellectual disability - microarray and sequencing v2.740 ITCH Ivone Leong Added comment: Comment on publications: PMID: 20170897 describes a large Amish family with 10 affected individuals from 8 consanguineous and related families with multisystem autoimmune disease with facial dysmorphism. The affected individuals have organomegaly, failure to thrive, developmental delay, dysmorphic features, and autoimmune inflammatory cell infiltration of the lungs, liver, and gut.
Intellectual disability - microarray and sequencing v2.597 DHPS Konstantinos Varvagiannis gene: DHPS was added
gene: DHPS was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: DHPS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DHPS were set to 21389784; 21850436
Phenotypes for gene: DHPS were set to Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; EEG abnormality; Behavioral abnormality; Abnormality of head or neck
Penetrance for gene: DHPS were set to Complete
Review for gene: DHPS was set to GREEN
Added comment: Ganapathi et al. (doi.org/10.1016/j.ajhg.2018.12.017 - PMID : NA) report on 5 individuals from 4 unrelated families with biallelic pathogenic variants in DHPS.

The phenotype consisted of DD/ID (5/5), tone abnormalities (hypotonia/hypertonia/spasticity - 5/5), seizures (5/5 - in one case though unclear staring spells) with EEG abnormalities (5/5). Additionally most individuals displayed behavioral issues, or some common facial features.

Several other disorders had been ruled prior to the diagnosis, in all cases by exome sequencing.

All individuals harbored a specific missense variant (c.518A>G or p.Asn173Ser) in trans with various other variants incl. a splice site mutation (c.1014+1G>A), an in-frame deletion of 2 amino acids (c.912_917delTTACAT or p.Tyr305_Ile306del) or a variant abolishing the translation initiation codon (c.1A>G or p.Met1?) [All variants using NM_001930.3 as a reference].

Deoxyhypusine synthase (encoded by DHPS) is an enzyme participating in the first step of hypusine synthesis, an amino-acid which is specific to eukaryotic initiation factor 5A (eIF5A) and its homolog (eIF5A2).

eIF5A, its hypusinated form and DHPS have all been previously implicated in cellular proliferation/differentiation. eIF5A has also been proposed to be a mRNA translation elongation factor. A role of eIF5A in neuronal growth and survival has been proposed previously (all ref. in present article).

Neither eIF5A, nor DHPS or DOHH (an enzyme required for the second step of hypusination) have been associated to any disorders previously. Mutations in genes encoding other eukaryotic elongator factors (eg. EEF1A2, EEF2) have been associated with neurodevelopmental disorders.

Concerning the DHPS variants reported:

cDNA studies suggested that the c.1014+1G>A variant is translated but results in aberrant splicing and truncation of the protein before its active site.

The in-frame deletion as well as the missense variant were shown to have absent or partial (20%) enzyme activity in vitro respectively compared to wild-type (following expression in E.coli BL21(DE3) cells).

In line with this, reduced hypusination of eIF5A was observed for these 2 variants when compared to wild-type DHPS, upon co-transfection of constructs overexpressing DHPS (wt or mut.) and eIF5A in HEK293T cells.

Absence of homozygous DHPS LoF variants in population databases might suggest that complete deficiency is incompatible with normal embryonic development. Mice heterozygous for Dhps deletion do not demonstrate severe phenotypes, though homozygosity is embryonically lethal (PMIDs: 21389784, 21850436).
---------
DHPS is not associated with any phenotype in G2P, nor in OMIM.
This gene is not - at least commonly - included in gene panels for ID offered by diagnostic laboratories.
---------
As a result, DHPS can be considered for inclusion in this panel as green (or amber).
Sources: Literature
Intellectual disability - microarray and sequencing v2.595 NUS1 Konstantinos Varvagiannis gene: NUS1 was added
gene: NUS1 was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: NUS1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: NUS1 were set to 25066056; 29100083; 24824130; 30348779
Phenotypes for gene: NUS1 were set to #617082 - ?Congenital disorder of glycosylation, type 1aa; #617831 - Mental retardation, autosomal dominant 55, with seizures; Abnormality of extrapyramidal motor function
Penetrance for gene: NUS1 were set to unknown
Review for gene: NUS1 was set to AMBER
gene: NUS1 was marked as current diagnostic
Added comment: Mutations in NUS1 have been implicated in recessive as well as dominant forms of ID (1 and 3 unrelated individuals respectively). The latter individuals presented with a developmental and epileptic encephalopathy with ID. At least 2 of these individuals had tremor and other movement disorders. A recent study proposes that NUS1 variants contribute to Parkinson's disease (1 individual with de novo variant affecting the canonical splice site, 26 additional individuals with missense variants - for which segregation studies where not however performed). ID is not commented on for these individuals.

NUS1 is included in the DD panel of G2P, associated with "Epilepsy and intellectual disability". (Monoallelic LoF variants / Disease confidence : probable). This gene is included in gene panels for ID offered by diagnostic laboratories (incl. Radboudumc). Associated phenotypes in OMIM and others discussed in the literature are summarized below (to my understanding).

As a result, NUS1 can be considered for inclusion in the ID panel probably as amber.
--------
Recessive - [MIM #617082 - ?Congenital disorder of glycosylation, type 1aa] :

Park et al. (2014 - PMID: 25066056) report on an individual homozygous for a NUS1 missense variant (R290H) and suggest that biallelic variants cause a congenital disorder of glycosylation.

The authors based in studies in yeast, mice and man provide evidence that NUS1 encodes the Nogo-B receptor (NgBR), a subunit of cis-prenyltransferase (cis-PTase), important for its activation. cis-PTase catalyzes one of the reactions for dolichol biosynthesis. Dolichol, in turn, is a carrier of glycans for N-linked glycosylation, O-mannosylation and GPI anchor biosynthesis.

Genetic defects in the dolichol biosynthetic pathway have been linked to other forms of CDG and/or other recessive or dominant neurodevelopmental disorders (eg. SRD5A3- and DHDDS-related disorders).

Similarities are provided at the cellular level between different organisms. Heterozygous knockout mice appear normal. Homozygosity is associated with embryonic lethality before E6.5. Conditional knockout in mouse embryonic fibroblasts led to accumulation of free cholesterol, decreased cis-PTase activity, and mannose incorporation in protein (the first & third rescued by transduction with lentiviral human NgBR).

In patient fibroblasts protein levels appeared similar to controls. Interaction with Nogo-B (and hCIT - the product of DHDDS) was not affected. As in mice, accumulation of free cholesterol was observed in cells, with decreased cis-PTase activity and mannose incorporation. LAMP-1 and ICAM-1 were hypoglycosylated in patient fibroblasts. Altered dolichol profiles in serum and urine were observed in carriers of the NUS1 variant, similarly to what described in individuals with DHDDS LoF variants.
----------
Dominant - [MIM #617831 - Mental retardation, autosomal dominant 55, with seizures].

Hamdan et al. (2017 - PMID: 29100083) report on 3 unrelated individuals with developmental and epileptic encephalopathy (onset: 10m - 2.5y) and ID. Two individuals harbored de novo LoF variants while a third subject had a deletion of exon 2. Movement disorders were noted in all 3 and included tremor (2 subjects) or ataxia (1 additional subject).

The authors cite a previous study on 6q22.1 deletions the critical region of which encompassed only NUS1 and the promoter of SLC35F1 (Szafranski et al. - PMID: 24824130). Haploinsufficiency is discussed as a possible mechanism (pLI of 0.87). A more severe phenotype due to dramatic reduction of NUS1 activity is proposed for the previously reported patient with CDG.
----------
Other:
Guo et al. (2018 - PMID: 30348779) suggest that NUS1 pathogenic variants contribute to Parkinson's disease. By performing WES in 39 individuals with early onset Parkinson's disease and their unaffected patients (and sibs) the authors identified 1 individual with de novo insertion affecting a NUS1 canonical splice site. RT-PCR demonstrated increased mRNA levels compared with controls. Skipping of 91 bp of exon 3 was demonstrated.

Study in 2 large sporadic PD-patient (N=1852+3237)/control cohorts (N=1565+2858) suggested association between NUS1 non-synonymous variants and PD (P=1.01e-5, OR:11.3). Other genetic causes of PD were excluded in 26 additional individuals with NUS1 missense variants.

Phenotypes of all 27 individuals are provided in Dataset_S04.

NUS1 has been found to be differentially expressed in PD mouse models.

RNAi-mediated knockdown of Tango14 (the Drosophila NUS1) resulted in impaired climbing activity, reduction in brain dopamine levels and abnormal apoptotic signals in brain.
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v2.592 HEXA Louise Daugherty Phenotypes for gene: HEXA were changed from Tay-Sachs disease, 272800GM2-gangliosidosis, several forms, 272800[Hex A pseudodeficiency], 272800; GM2-GANGLIOSIDOSIS TYPE 1 (GM2G1) to Tay-Sachs disease, 272800; GM2-gangliosidosis, several forms, 272800; GM2-GANGLIOSIDOSIS TYPE 1 (GM2G1)
Intellectual disability - microarray and sequencing v2.588 MAPK8IP3 Konstantinos Varvagiannis gene: MAPK8IP3 was added
gene: MAPK8IP3 was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: MAPK8IP3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Phenotypes for gene: MAPK8IP3 were set to 25363768; 28213671; 28135719
Penetrance for gene: MAPK8IP3 were set to unknown
Review for gene: MAPK8IP3 was set to GREEN
Added comment: Platzer et al. (doi.org/10.1016/j.ajhg.2018.12.008) report on 13 unrelated individuals with de novo pathogenic variants in MAPK8IP3.

The phenotype consisted - among others - of DD with ID (13/13) as well as variable brain anomalies (incl. cerebral or cerebellar atrophy, corpus callosum anomalies, perisylvian polymicrogyria, etc). Microcephaly, seizures, ataxia, ASD were features seen in fewer individuals.

The variants reported included 2 nonsense, 1 frameshift as well as 6 missense mutations (3 missense variants were found - each - in 2 or more individuals).

All three LoF variants were located in the first exon. (mRNA levels were not studied for these variants although NMD is presumed). The brain anomalies were more consistent for missense variants.

MAPK8IP3 appears intolerant to LoF variants (pLI of 1) with constraint also for missense variants (Z-score of 4.06).

In silico structural modeling was possible for 4 missense variants based on available crystal structures and different mechanisms were presumed (disruption of contacts between Leu444 of adjacent subunits, altered interaction between proximal residues at positions 461 and 466, or disruption of protein protein interactions).

The C.elegans MAPK8IP3 ortholog is encoded by the unc-16 gene. Impaired clearance and accumulation of organelles (incl. lysosomes) in axons is observed in unc-16 mutants (recessive phenotype).

For 6 variants, also conserved in C.elegans, mutants were engineered using CRISPR genome editing. The observed mutant phenotypes (increased axonal lysosomal density compared to controls for 2 variants, sluggish locomotion with lower swimming cycle rate for 1 nonsense and 4 missense variants) were rescued upon CRISPR reverse engineering of each mutant allele back to its wild-type sequence.

The authors cite 3 previous studies, in which individuals investigated for neurodevelopmental disorders where found to harbor de novo MAPK8IP3 variants, namely:
- PMID 25363768 (Iossifov et al.) : p.Tyr94Cys [ASD without ID]
- PMID 28213671 (Berger et al.) : p.Glu461Gly [Smith-Magenis-like phenotype)
- PMID 28135719 (DDD study) p.Arg1146Cys [This variant was found in 3 individuals in the study by Platzer et al.]
------------
A few additional individuals with neurodevelopmental disorders appear in the denovo-db after filtering for coding variants:
http://denovo-db.gs.washington.edu/denovo-db/QueryVariantServlet?searchBy=Gene&target=MAPK8IP3
------------
NM_015133.4:c.111C>G (p.Tyr37Ter) has been submitted in ClinVar by the Undiagnosed Diseases Network (NIH) as likely pathogenic, associated with MAPK8IP3-related disorder (hypotonia, DD, EEG anomalies among the phenotypes). It is not clear whether this subject corresponds to individual #3 reported by the previous study (possibly not the case).
------------
MAPK8IP3 is not associated with any phenotype in OMIM, nor in G2P.
This gene is not commonly included in gene panels for ID.
------------
As a result, MAPK8IP3 can be considered for inclusion in this panel as green (rather than amber).
Sources: Literature
Intellectual disability - microarray and sequencing v2.584 AIMP2 Konstantinos Varvagiannis gene: AIMP2 was added
gene: AIMP2 was added to Intellectual disability. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: AIMP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AIMP2 were set to 29215095
Phenotypes for gene: AIMP2 were set to Leukodystrophy, hypomyelinating, 17 (MIM 618006)
Penetrance for gene: AIMP2 were set to Complete
Review for gene: AIMP2 was set to AMBER
gene: AIMP2 was marked as current diagnostic
Added comment: Biallelic pathogenic variants in AIMP2 cause Leukodystrophy, hypomyelinating, 17 (MIM 618006).

3 individuals from 2 unrelated consanguineous families, of Indian origin have been reported (all in PMID: 29215095).

The phenotype consisted of feeding difficulties, lack of development with intellectual disability and seizures as well as brain MRI abnormalities (cerebral and cerebellar atrophy, hypo-intensities of the basal ganglia on T2w sequences). Severe microcephaly was observed in 2 patients for whom this information was available (birth measurements not specified).

All patients described to date were homozygous for a nonsense variant [NM_006303.3:c.105C>A or p.(Tyr35Ter)] which appears to be a founder mutation in this population.

Quantitative reverse transcription PCR demonstrated reduced mRNA levels in peripheral lymphocytes, but this decrease was not significant compared to controls (the authors presume low level of NMD).

Previous mouse models provide some - but not substantial - support.

The authors note marked similarity with the phenotype associated with AIMP1 (Leukodystrophy, hypomyelinating, 3 - MIM 260600), another auxiliary protein of the macromolecular multienzyme multi-tRNA synthetase complex. AIMP1 is listed in the current panel as green.

AIMP2 is not associated with any phenotype in G2P.

This gene is included in gene panels for ID offered by some diagnostic laboratories (incl. Radboudumc).

As a result, AIMP2 can be considered for inclusion in this panel probably as amber.
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability - microarray and sequencing v2.562 CAD Konstantinos Varvagiannis gene: CAD was added
gene: CAD was added to Intellectual disability. Sources: Literature
Mode of inheritance for gene: CAD was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CAD were set to 25678555; 28007989
Phenotypes for gene: CAD were set to Epileptic encephalopathy, early infantile, 50 - MIM 616457
Penetrance for gene: CAD were set to Complete
Review for gene: CAD was set to AMBER
gene: CAD was marked as current diagnostic
Added comment: Biallelic pathogenic variants in CAD cause Epileptic encephalopathy, early infantile, 50 - MIM 616457.

Overall 5 individuals from 4 unrelated families have been reported in detail in PMIDs 25678555 and 28007989 (table 1 in this article provides a summary).

The phenotype consisted of developmental delay which preceded the onset of seizures (6 months to 2 years) and hematologic anomalies (anemia and anisopoikilocytosis). The patients presented developmental stagnation/regression, which in most cases occurred several months following the seizure onset.

CAD is a tri-functional protein catalyzing the first 3 steps of the de novo pyrimidine biosynthesis.

In total, 5 variants have been reported (2 missense, 1 nonsense and 2 splice-site SNVs) with functional studies (cDNA, metabolites) supporting pathogenicity and disruption of this pathway.

CAD mutations have previously been studied in other model organisms.

Mutations in enzymes catalyzing downstream steps of the same pathway are associated with other syndromes.

The disorder appears to be amenable to dietary intervention (uridine supplementation).

CAD is included in gene panels for intellectual disability offered by different diagnostic laboratories.

As a result, this gene can be considered for inclusion in the ID panel as amber or green.
Sources: Literature
Intellectual disability - microarray and sequencing v2.550 UFM1 Konstantinos Varvagiannis gene: UFM1 was added
gene: UFM1 was added to Intellectual disability. Sources: Literature,Expert Review
Mode of inheritance for gene: UFM1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: UFM1 were set to 28931644; 29868776
Phenotypes for gene: UFM1 were set to Leukodystrophy hypomyelinating 14, 617899
Penetrance for gene: UFM1 were set to Complete
Review for gene: UFM1 was set to GREEN
Added comment: Biallelic UFM1 mutations cause Leukodystrophy hypomyelinating 14, MIM 617899.

PMID: 28931644 is the first report on 16 individuals from 14 families with shared Roma ethnic background. All subjects were found to harbor a UFM1 promoter 3 basepair deletion in the homozygous state.

All patients demonstrated a severe phenotype including lack of development and severe epileptic encephalopathy while their MRI images demonstrated hypomyelination with atrophy of the basal ganglia and the cerebellum.

The promoter deletion was detected by exome sequencing. Previously a 0.8 Mb homozygous region was identified to be shared by all the patients in whom a SNP array was performed. Alternative causes, notably TUBB4A mutations and deletions/duplications were excluded. 3 individuals had Sanger sequencing of all coding regions within the homozygous interval to rule out other - eventually missed - variants.

PMID: 29868776 reports 4 additional individuals from 2 consanguineous families (one from Ethiopia, for the other this was not specified). All 4 patients were homozygous for the c.241C>T (NM_016617.3) or p.(Arg81Cys) variant which was shown to be hypomorphic upon functional studies.

The phenotype consisted of developmental delay (4/4 or 20/20 including the patients from the previous report with which comparison is made in table 2 of the article) with microcephaly (4/4 or 20/20) and seizures (4/4 or 16/20) as well as MRI abnormalities. Failure to thrive and/or short stature were also among the most common features.

UFM1 (as well as UFC1 also discussed in the same article) participate in ufmylation, with mutations in other enzymes of the same process (notably UBA5 - gene rated Green in the ID and epilepsy panels) having already been described in neurodevelopmental disorders.

As a result, this gene can be considered for inclusion in this panel as green (or amber).
Sources: Literature, Expert Review
Intellectual disability - microarray and sequencing v2.530 RHOBTB2 Konstantinos Varvagiannis gene: RHOBTB2 was added
gene: RHOBTB2 was added to Intellectual disability. Sources: Expert Review,Literature
Mode of inheritance for gene: RHOBTB2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RHOBTB2 were set to 29276004; 29768694; 26740508
Phenotypes for gene: RHOBTB2 were set to Global developmental delay; Intellectual disability; Seizures; Postnatal microcephaly
Penetrance for gene: RHOBTB2 were set to unknown
Mode of pathogenicity for gene: RHOBTB2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: RHOBTB2 was set to GREEN
gene: RHOBTB2 was marked as current diagnostic
Added comment: PMID: 29276004 reports on 10 unrelated patients with de novo pathogenic missense variants in RHOBTB2. The phenotype in all individuals was compatible with a developmental and epileptic encephalopathy including early-onset seizures, severe intellectual disability, postnatal onset microcephaly (6/10) and movement disorders (8/10).

The variants occured as de novo events and clustered within the BTB-domain encoding region (within and between the 2 BTB domains). Three missense variants were recurrent and/or concerned the same residue (p.Arg483His in 4 individuals, Arg511Gln was reported in 2, and Arg511Trp was was found in another 2 individuals).

Functional studies in HEK293 cells suggested increased abundance of the mutant protein secondary to decreased proteasome degradation. Using Drosophila as a model organism, altered expression of RhoBTB (the single ortholog of the 3 vertebrate paralogs, closest to RHOBTB2) was shown to result in neurological phenotypes. RhoBTB overexpression in particular was associated with increased bang sensitivity (which was not the case or milder in the case if knockdown of this gene) and impaired performance upon the negative geotaxis assay, similar to the human neurological phenotypes. Altered RhoBTB dosage was shown to be associated with impaired dendrite development.

As commented by the authors, these results as well as the clustering of missense variants and the pLI score of 0.51 reported for RHOBTB2 are consistent with altered protein function (due to the missense variants) rather than haploinsufficiency or loss-of-function.

PMID: 29768694 describes 3 additional individuals, all found to harbor de novo missense variants again within the BTB-domain encoding region. Two of the variants had been reported in the previous study (Arg511Gln and Arg483His) while the third was a private one (Arg507Cys). The phenotype was similar to the previous descriptions. Functional studies were suggestive of impaired degradation of the mutant protein by the CUL3 complex although this was not secondary to decreased binding with CUL3.

PMID: 26740508 (cited by the two aforementioned publications) reports briefly on an individual with de novo missense variant in the same region of RHOBTB2 (Asn510Asp) and Rett-like phenotype.

RHOBTB2 is included in gene panels for intellectual disability offered by different diagnostic laboratories.

As a result the gene can be considered for inclusion in the intellectual disability and epilepsy panels as green.
Sources: Expert Review, Literature
Intellectual disability - microarray and sequencing v2.468 GAN Louise Daugherty gene: GAN was added
gene: GAN was added to Intellectual disability. Sources: Victorian Clinical Genetics Services
Mode of inheritance for gene: GAN was set to