Intellectual disability
Gene: SLC38A3 No listGreen List (high evidence)
Marafi et al (2021 - PMID: 34605855) describe the phenotype of 10 individuals, belonging to 7 families (6/7 consanguineous), harboring biallelic deleterious SLC38A3 variants. One subject (from fam3) was previously reported in the context of a larger cohort of consanguineous families investigated with exome sequencing (2017, PMID: 31130284).
The phenotype overall corresponded to a DEE and features included axial hypotonia (10/10), severe global DD or ID (10/10), seizures (8/10, onset : 1w-15m, NOT observed in 2/10 aged 1y3m and 4y | s. types: tonic-clonic in 3/8, tonic 2/8, focal 2/8 with secondary generalization, myoclonic 1/8, gelastic 1/8 | EEG burst-suppression, hypsarrhythmia in few). Microcephaly was observed in (8/10) and was more commonly postnatal and/or progressive. Variable abnormalities were observed upon brain imaging incl. cerebral (5/10) or cerebellar atrophy (2/10) and abnormal CC (6/10), abnormal myelination for age (6/10). Other phenotypes included visual impairment (9/10), peripheral hypertonia (8/9) constipation (8/9) and dysphagia (7/9), FTT (4/8), movement disorder (3/10). Metabolic studies indicated (transient) elevation of lactate (7/8 - also pyruvate in 2) and elevated plasma ammonia (4/7).
Individuals from the 1st family were investigated with ES, and the SLC38A3 splice site variant (NM_006841.6:c.855+1G>T) was the most likely candidate, additional SNVs not contributing to the NDD phenotype. Other affected subjects were ascertained through GeneMatcher/collaborations.
In total, 3 different missense and 4 pLoF (1 fs, 2 nonsense, 1 splicing) variants were identified with individuals from 2 families being hmz or cmd htz for missense variants. Variants were absent/ultrarare with no homozygotes in public/in-house databases with several in silico predictions in favor of a deleterious effect. Regions of AOH (around SLC38A3/total) are provided for some individuals/families.
Sanger sequencing was used for confirmation and segregation studies (apart from carrier parents in 7/7 fam, 11 unaffected sibs tested in 6/7 fam).
The solute carrier (SLC) superfamily of transmembrane transporters - highly expressed in mammalian brain - is involved in exchange of amino-acids (AAs), nutrients, ions, neurotransmitters and metabolites etc across biological membranes with >100 SLC-encoding genes associated with NDDs.
SLC38A3 specifically encodes SNAT3, a sodium-coupled neutral amino-acid transporter, principal transporter of Asn, His, Gln (precursor for GABA and glutamate), expressed in brain, liver, kidney, retina and pancreas. In the brain, it localizes to peri-synaptic astrocytes playing an important role in glutamate/GABA-glutamine cycle.
While the pLoF variants are predicted to undergo NMD or result in non-functional protein, protein modelling suggested that missense ones affect protein activity or stability.
Biochemical and metabolic screening was carried out for several individuals with plasma AAs reported normal (10/10), urinary OAs normal in 9/9, CSF AAs (incl. GABA/glutamine) normal in 2 sibs, CSF lactate normal in 1 indiv. studied. As discussed above plasma ammonia was elevated in 4/7 (2 fam), and 7/10 had elevated lactate and/or pyruvate (2/7).
Untargeted metabolomic profiles performed in biofluids (plasma from 3 subjects, CSF:1, urine:1) were suggestive of altered AA and nitrogen metabolism. In particular, alterations in levels of AA known to be transported by SNAT3 were found. 676 molecules overall showed deviation in plasma samples, 630 in urine and 241 in CSF (albeit with no consistent pattern). Perturbations in several biochemical pathways were shown to occur (incl. Gln-,Asn- and His- pathways).
Slc38a3-/- mice have reductions in brain glutamate and GABA neurotransmitters in homogenized brain tissue (GABA analytes being normal in plasma samples or the single CSF sample available from affected subjects). Snat3-deficient mice had elevation of plasma urea and normal ammonia levels (urea was low in all human samples and ranged from -2 to -3.5 SD in plasma, ammonia was elevated in 4/7). Slc38a3-/- mice have impaired growth, lethargy and ataxic gait, altered plasma AAs, normal glutamine in plasma with abundance in brain and exhibit early lethality. Plasma AAs were normal in 4 affected individuals, impaired growth observed in 4 and gait impairment was observed in 9/10. Hypoglycemia, previously reported in Slc38a3-/- mice, was not observed in any of the patients although this is presumably explained by diet/feeding intervals with abnormalities in pentose phosphate pathway in one individual hypothesized to be reflective of abn. glucose metabolism. The human phenotypes of microcephaly and seizures were not observed in mice. For mouse studies PMIDs cited by the authors : 27362266, 26490457.
There is currently no SLC38A3-related phenotype reported in OMIM. In G2P this gene is incl. in the DD panel (biallelic, confidence: strong, SLC38A3-associated epileptic encephalopathy). SLC38A3 is listed among the primary ID genes in SysID. In PanelApp Australia, SLC38A3 is included with green rating in the epilepsy, ID and microcephaly panels.
Consider inclusion with green rating (10 individuals, 7 families, 7 variants, role of SLCs and SLC38A3, alterations in AA/nitrogen metabolism etc) or amber rating (if discordances with mouse model considered).
Please consider inclusion in other panels e.g. for microcephaly, CC abnormalities, metabolic disorders, etc.
Sources: Literature, OtherCreated: 30 Mar 2022, 1:11 p.m.
Mode of inheritance
BIALLELIC, autosomal or pseudoautosomal
Phenotypes
Infantile axial hypotonia; Global developmental delay; Intellectual disability; Seizures; Spasticity; Microcephaly; Cerebral atrophy; Cerebellar atrophy; Abnormality of the corpus callosum; Dysphagia; Constipation; Increased serum lactate; Hyperammonemia
Publications
gene: SLC38A3 was added gene: SLC38A3 was added to Intellectual disability. Sources: Literature,Other Mode of inheritance for gene: SLC38A3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SLC38A3 were set to 34605855 Phenotypes for gene: SLC38A3 were set to Infantile axial hypotonia; Global developmental delay; Intellectual disability; Seizures; Spasticity; Microcephaly; Cerebral atrophy; Cerebellar atrophy; Abnormality of the corpus callosum; Dysphagia; Constipation; Increased serum lactate; Hyperammonemia Penetrance for gene: SLC38A3 were set to Complete Review for gene: SLC38A3 was set to GREEN
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at [email protected]
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.